Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul;9(4):045501.
doi: 10.1117/1.JMI.9.4.045501. Epub 2022 Jul 8.

Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski-Rockette parameter estimates

Affiliations

Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski-Rockette parameter estimates

Stephen L Hillis et al. J Med Imaging (Bellingham). 2022 Jul.

Abstract

Purpose: The most frequently used model for simulating multireader multicase (MRMC) data that emulates confidence-of-disease ratings from diagnostic imaging studies has been the Roe and Metz (RM) model, proposed by Roe and Metz in 1997 and later generalized by Hillis (2012), Abbey et al. (2013), and Gallas and Hillis (2014). A problem with these models is that it has been difficult to set model parameters such that the simulated data are similar to MRMC data encountered in practice. To remedy this situation, Hillis (2018) mapped parameters from the RM model to Obuchowski-Rockette (OR) model parameters that describe the distribution of the empirical AUC outcomes computed from the RM model simulated data. We continue that work by providing the reverse mapping, i.e., by deriving an algorithm that expresses RM parameters as functions of the OR empirical AUC distribution parameters. Approach: We solve for the corresponding RM parameters in terms of the OR parameters using numerical methods. Results: An algorithm is developed that results in, at most, one solution of RM parameter values that correspond to inputted OR parameter values. The algorithm can be implemented using an R software function. Examples are provided that illustrate the use of the algorithm. A simulation study validates the algorithm. Conclusions: The resulting algorithm makes it possible to easily determine RM model parameter values such that simulated data emulate a specific real-data study. Thus, MRMC analysis methods can be empirically tested using simulated data similar to that encountered in practice.

Keywords: Obuchowski and Rockette; ROC curve; Roe and Metz; diagnostic radiology; simulated data.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
ROC curves as a function of AUC and b. TPF, true positive fraction (or sensitivity); FPF, false positive fraction (or 1 – specificity).
Fig. 2
Fig. 2
Flowchart illustrating the use of the OR-to-RMH and RMH-to-OR algorithms to simulate MRMC data that emulate a real-data study.
Fig. 3
Fig. 3
Flowchart illustrating the use of the OR-to-RMH and RMH-to-OR algorithms to simulate MRMC data that emulates OR AUCs, reader variance components, and OR correlations, but not σε:OR2.
Fig. 4
Fig. 4
Flowchart, analogous to Fig. 2, illustrating the use of the OR-to-RMH and RMH-to-OR algorithms to simulate MRMC data that emulate the VanDyke data.
Fig. 5
Fig. 5
Comparison of empirical ROC curves computed from VanDyke data and three MRMC data samples that emulate the VanDyke data, generated from the RMH model in Fig. 4. TPF, true positive fraction (or sensitivity); FPF, false positive fraction (or 1 – specificity).

References

    1. Obuchowski N. A., Rockette H. E., “Hypothesis testing of diagnostic accuracy for multiple readers and multiple tests: an ANOVA approach with dependent observations,” Commun. Stat. Simul. Comput. 24(2), 285–308 (1995).10.1080/03610919508813243 - DOI
    1. Roe C. A., Metz C. E., “Dorfman–Berbaum–Metz method for statistical analysis of multireader, multimodality receiver operating characteristic data: validation with computer simulation,” Acad. Radiol. 4(4), 298–303 (1997).10.1016/S1076-6332(97)80032-3 - DOI - PubMed
    1. Hillis S. L., “Simulation of unequal-variance binormal multireader ROC decision data: an extension of the Roe and Metz simulation model,” Acad. Radiol. 19(12), 1518–1528 (2012).10.1016/j.acra.2012.09.011 - DOI - PMC - PubMed
    1. Abbey C. K., Samuelson F. W., Gallas B. D., “Statistical power considerations for a utility endpoint in observer performance studies,” Acad. Radiol. 20(7), 798–806 (2013).10.1016/j.acra.2013.02.008 - DOI - PubMed
    1. Gallas B. D., Hillis S. L., “Generalized Roe and Metz receiver operating characteristic model: analytic link between simulated decision scores and empirical AUC variances and covariances,” J. Med. Imaging 1(3), 031006 (2014).JMEIET10.1117/1.JMI.1.3.031006 - DOI - PMC - PubMed