Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 27;144(29):13294-13301.
doi: 10.1021/jacs.2c04588. Epub 2022 Jul 12.

Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release

Affiliations

Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release

Alexandra E Lubaev et al. J Am Chem Soc. .

Abstract

A new strategy is described for the Lewis base-catalyzed bromochlorination of unsaturated systems that is mechanistically distinct from prior methodologies. The novelty of this method hinges on the utilization of thionyl chloride as a latent chloride source in combination with as little as 1 mol % of triphenylphosphine or triphenylphosphine oxide as Lewis basic activators. This metal-free, catalytic chemo-, regio-, and diastereoselective bromochlorination of alkenes and alkynes exhibits excellent site selectivity in polyunsaturated systems and provides access to a wide variety of vicinal bromochlorides with up to >20:1 regio- and diastereoselectivity. The precision installation of Br, Cl, and I in various combinations is also demonstrated by simply varying the commercial halogenating reagents employed. Notably, when a chiral Lewis base promoter is employed, an enantioselective bromochlorination of chalcones is possible with up to a 92:8 enantiomeric ratio when utilizing only 1-3 mol % of (DHQD)2PHAL.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a–c) Bromochlorination of alkenes.
Figure 2
Figure 2
Proposed mechanism for the Lewis base-catalyzed bromochlorination.
Figure 3
Figure 3
(a, b) Catalytic enantioselective bromochlorination of alkenes and inspiration for an alternative strategy.

References

    1. For selected references on the utility of halogen-containing molecules, see

    2. Gribble G. W. Natural Organohalogens: A New Frontier for Medicinal Agents?. J. Chem. Educ. 2004, 81, 1441.10.1021/ed081p1441. - DOI
    3. Jeschke P. The Unique Role of Halogen Substituents in the Design of Modern Agrochemicals. Pest Manage. Sci. 2010, 66, 10–27. 10.1002/ps.1829. - DOI - PubMed
    4. Smith B. R.; Eastman C. M.; Njardarson J. T. Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. J. Med. Chem. 2014, 57, 9764–9773. 10.1021/jm501105n. - DOI - PubMed
    5. Gál B.; Bucher C.; Burns N. Z. Chiral Alkyl Halides: Underexplored Motifs in Medicine. Mar. Drugs 2016, 14, 206.10.3390/md14110206. - DOI - PMC - PubMed
    6. Jeschke P. Latest Generation of Halogen-Containing Pesticides. Pest Manage. Sci. 2017, 73, 1053–1066. 10.1002/ps.4540. - DOI - PubMed
    7. Lin R.; Amrute A. P.; Pérez-Ramírez J. Halogen-Mediated Conversion of Hydrocarbons to Commodities. Chem. Rev. 2017, 117, 4182–4247. 10.1021/acs.chemrev.6b00551. - DOI - PubMed
    8. Pak B. S.; Supantanapong N.; Vanderwal C. D. The Recurring Roles of Chlorine in Synthetic and Biological Studies of the Lissoclimides. Acc. Chem. Res. 2021, 54, 1131–1142. 10.1021/acs.accounts.0c00866. - DOI - PMC - PubMed
    1. For selected references on halogenated natural products, see

    2. Gribble G. W. Naturally Occurring Organohalogen Compounds. Acc. Chem. Res. 1998, 31, 141–152. 10.1021/ar9701777. - DOI
    3. Gribble G. W. A Recent Survey of Naturally Occurring Organohalogen Compounds. Environ. Chem. 2015, 12, 396–405. 10.1071/EN15002. - DOI
    4. Gribble G. W. Newly Discovered Naturally Occurring Organohalogens. ARKIVOC 2019, 2018, 372–410.
    1. For selected reviews on reactions of organohalides, see

    2. Beller M.; Zapf A.; Riermeier T. H.. Palladium-Catalyzed Olefinations of Aryl Halides (Heck Reaction) and Related Transformations. In Transition Metals for Organic Synthesis, Beller M., Bolm C. Eds.; Wiley Online Books, WILEY-VCH, 2004; pp. 271–305.
    3. Rudolph A.; Lautens M. Secondary Alkyl Halides in Transition-Metal-Catalyzed Cross-Coupling Reactions. Angew. Chem., Int. Ed. 2009, 48, 2656–2670. 10.1002/anie.200803611. - DOI - PubMed
    4. Kambe N.; Iwasaki T.; Terao J. Pd-Catalyzed Cross-Coupling Reactions of Alkyl Halides. Chem. Soc. Rev. 2011, 40, 4937–4947. 10.1039/c1cs15129k. - DOI - PubMed
    5. Ye S.; Xiang T.; Li X.; Wu J. Metal-Catalyzed Radical-Type Transformation of Unactivated Alkyl Halides with C–C Bond Formation under Photoinduced Conditions. Org. Chem. Front. 2019, 6, 2183–2199. 10.1039/C9QO00272C. - DOI
    6. Cheng L.-J.; Mankad N. P. C–C and C–X Coupling Reactions of Unactivated Alkyl Electrophiles Using Copper Catalysis. Chem. Soc. Rev. 2020, 49, 8036–8064. 10.1039/D0CS00316F. - DOI - PubMed
    7. Nelson J. D. Aliphatic Nucleophilic Substitution. Pract. Synth. Org. Chem. 2020, 1–63. 10.1002/9781119448914.ch1. - DOI
    8. Ripin D. H. B.; Brown A. R. Synthesis of “Nucleophilic” Organometallic Reagents. Pract. Synth. Org. Chem. 2020, 591–620. 10.1002/9781119448914.ch12. - DOI
    9. Juliá F.; Constantin T.; Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem. Rev. 2022, 122, 2292–2352. 10.1021/acs.chemrev.1c00558. - DOI - PubMed
    1. Bolton R.Chapter 1 Electrophilic Additions to Unsaturated Systems. In Comprehensive Chemical Kinetics; Bamford C. H., Tipper C. F. H. Eds.; Vol. 9; Elsevier, 1973; pp. 1–86.
    2. Schmid G. H.; Garratt D. G.. Electrophilic Additions to Carbon–Carbon Double Bonds. In Double-Bonded Functional Groups (1977); S P. Ed.; Patai’s Chemistry of Functional Groups: Vol. 2; 1977; pp. 725–912.
    3. Castellanos A.; Fletcher S. P. Current Methods for Asymmetric Halogenation of Olefins. Chem. – Eur. J. 2011, 17, 5766–5776. 10.1002/chem.201100105. - DOI - PubMed
    4. Denmark S. E.; Kuester W. E.; Burk M. T. Catalytic, Asymmetric Halofunctionalization of Alkenes—a Critical Perspective. Angew. Chem., Int. Ed. 2012, 51, 10938–10953. 10.1002/anie.201204347. - DOI - PMC - PubMed
    5. Hennecke U. New Catalytic Approaches Towards the Enantioselective Halogenation of Alkenes. Chem. – Asian J. 2012, 7, 456–465. 10.1002/asia.201100856. - DOI - PubMed
    6. Cheng Y. A.; Yu W. Z.; Yeung Y.-Y. Recent Advances in Asymmetric Intra- and Intermolecular Halofunctionalizations of Alkenes. Org. Biomol. Chem. 2014, 12, 2333–2343. 10.1039/C3OB42335B. - DOI - PubMed
    7. Hennecke U.; Rösner C.; Wald T.; Robert T.; Oestreich, M. 7.21 Addition Reactions with Formation of Carbonhalogen Bonds. In Comprehensive Organic Synthesis (Second Edition), Knochel P. Ed.; Elsevier, 2014; pp. 638–691.
    1. For selected reviews, see

    2. Nilewski C.; Carreira E. M. Recent Advances in the Total Synthesis of Chlorosulfolipids. Eur. J. Org. Chem. 2012, 2012, 1685–1698. 10.1002/ejoc.201101525. - DOI
    3. Cresswell A. J.; Eey S. T. C.; Denmark S. E. Catalytic, Stereoselective Dihalogenation of Alkenes: Challenges and Opportunities. Angew. Chem., Int. Ed. 2015, 54, 15642–15682. 10.1002/anie.201507152. - DOI - PMC - PubMed
    4. Saikia I.; Borah A. J.; Phukan P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042. 10.1021/acs.chemrev.5b00400. - DOI - PubMed
    5. Bock J.; Guria S.; Wedek V.; Hennecke U. Enantioselective Dihalogenation of Alkenes. Chem. – Eur. J. 2021, 27, 4517–4530. 10.1002/chem.202003176. - DOI - PubMed

Publication types