Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release
- PMID: 35820071
- PMCID: PMC9945878
- DOI: 10.1021/jacs.2c04588
Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release
Abstract
A new strategy is described for the Lewis base-catalyzed bromochlorination of unsaturated systems that is mechanistically distinct from prior methodologies. The novelty of this method hinges on the utilization of thionyl chloride as a latent chloride source in combination with as little as 1 mol % of triphenylphosphine or triphenylphosphine oxide as Lewis basic activators. This metal-free, catalytic chemo-, regio-, and diastereoselective bromochlorination of alkenes and alkynes exhibits excellent site selectivity in polyunsaturated systems and provides access to a wide variety of vicinal bromochlorides with up to >20:1 regio- and diastereoselectivity. The precision installation of Br, Cl, and I in various combinations is also demonstrated by simply varying the commercial halogenating reagents employed. Notably, when a chiral Lewis base promoter is employed, an enantioselective bromochlorination of chalcones is possible with up to a 92:8 enantiomeric ratio when utilizing only 1-3 mol % of (DHQD)2PHAL.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
-
For selected references on the utility of halogen-containing molecules, see
- Gribble G. W. Natural Organohalogens: A New Frontier for Medicinal Agents?. J. Chem. Educ. 2004, 81, 1441.10.1021/ed081p1441. - DOI
- Jeschke P. The Unique Role of Halogen Substituents in the Design of Modern Agrochemicals. Pest Manage. Sci. 2010, 66, 10–27. 10.1002/ps.1829. - DOI - PubMed
- Smith B. R.; Eastman C. M.; Njardarson J. T. Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. J. Med. Chem. 2014, 57, 9764–9773. 10.1021/jm501105n. - DOI - PubMed
- Gál B.; Bucher C.; Burns N. Z. Chiral Alkyl Halides: Underexplored Motifs in Medicine. Mar. Drugs 2016, 14, 206.10.3390/md14110206. - DOI - PMC - PubMed
- Jeschke P. Latest Generation of Halogen-Containing Pesticides. Pest Manage. Sci. 2017, 73, 1053–1066. 10.1002/ps.4540. - DOI - PubMed
- Lin R.; Amrute A. P.; Pérez-Ramírez J. Halogen-Mediated Conversion of Hydrocarbons to Commodities. Chem. Rev. 2017, 117, 4182–4247. 10.1021/acs.chemrev.6b00551. - DOI - PubMed
- Pak B. S.; Supantanapong N.; Vanderwal C. D. The Recurring Roles of Chlorine in Synthetic and Biological Studies of the Lissoclimides. Acc. Chem. Res. 2021, 54, 1131–1142. 10.1021/acs.accounts.0c00866. - DOI - PMC - PubMed
-
-
-
For selected references on halogenated natural products, see
- Gribble G. W. Naturally Occurring Organohalogen Compounds. Acc. Chem. Res. 1998, 31, 141–152. 10.1021/ar9701777. - DOI
- Gribble G. W. A Recent Survey of Naturally Occurring Organohalogen Compounds. Environ. Chem. 2015, 12, 396–405. 10.1071/EN15002. - DOI
- Gribble G. W. Newly Discovered Naturally Occurring Organohalogens. ARKIVOC 2019, 2018, 372–410.
-
-
-
For selected reviews on reactions of organohalides, see
- Beller M.; Zapf A.; Riermeier T. H.. Palladium-Catalyzed Olefinations of Aryl Halides (Heck Reaction) and Related Transformations. In Transition Metals for Organic Synthesis, Beller M., Bolm C. Eds.; Wiley Online Books, WILEY-VCH, 2004; pp. 271–305.
- Rudolph A.; Lautens M. Secondary Alkyl Halides in Transition-Metal-Catalyzed Cross-Coupling Reactions. Angew. Chem., Int. Ed. 2009, 48, 2656–2670. 10.1002/anie.200803611. - DOI - PubMed
- Kambe N.; Iwasaki T.; Terao J. Pd-Catalyzed Cross-Coupling Reactions of Alkyl Halides. Chem. Soc. Rev. 2011, 40, 4937–4947. 10.1039/c1cs15129k. - DOI - PubMed
- Ye S.; Xiang T.; Li X.; Wu J. Metal-Catalyzed Radical-Type Transformation of Unactivated Alkyl Halides with C–C Bond Formation under Photoinduced Conditions. Org. Chem. Front. 2019, 6, 2183–2199. 10.1039/C9QO00272C. - DOI
- Cheng L.-J.; Mankad N. P. C–C and C–X Coupling Reactions of Unactivated Alkyl Electrophiles Using Copper Catalysis. Chem. Soc. Rev. 2020, 49, 8036–8064. 10.1039/D0CS00316F. - DOI - PubMed
- Nelson J. D. Aliphatic Nucleophilic Substitution. Pract. Synth. Org. Chem. 2020, 1–63. 10.1002/9781119448914.ch1. - DOI
- Ripin D. H. B.; Brown A. R. Synthesis of “Nucleophilic” Organometallic Reagents. Pract. Synth. Org. Chem. 2020, 591–620. 10.1002/9781119448914.ch12. - DOI
- Juliá F.; Constantin T.; Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem. Rev. 2022, 122, 2292–2352. 10.1021/acs.chemrev.1c00558. - DOI - PubMed
-
-
- Bolton R.Chapter 1 Electrophilic Additions to Unsaturated Systems. In Comprehensive Chemical Kinetics; Bamford C. H., Tipper C. F. H. Eds.; Vol. 9; Elsevier, 1973; pp. 1–86.
- Schmid G. H.; Garratt D. G.. Electrophilic Additions to Carbon–Carbon Double Bonds. In Double-Bonded Functional Groups (1977); S P. Ed.; Patai’s Chemistry of Functional Groups: Vol. 2; 1977; pp. 725–912.
- Castellanos A.; Fletcher S. P. Current Methods for Asymmetric Halogenation of Olefins. Chem. – Eur. J. 2011, 17, 5766–5776. 10.1002/chem.201100105. - DOI - PubMed
- Denmark S. E.; Kuester W. E.; Burk M. T. Catalytic, Asymmetric Halofunctionalization of Alkenes—a Critical Perspective. Angew. Chem., Int. Ed. 2012, 51, 10938–10953. 10.1002/anie.201204347. - DOI - PMC - PubMed
- Hennecke U. New Catalytic Approaches Towards the Enantioselective Halogenation of Alkenes. Chem. – Asian J. 2012, 7, 456–465. 10.1002/asia.201100856. - DOI - PubMed
- Cheng Y. A.; Yu W. Z.; Yeung Y.-Y. Recent Advances in Asymmetric Intra- and Intermolecular Halofunctionalizations of Alkenes. Org. Biomol. Chem. 2014, 12, 2333–2343. 10.1039/C3OB42335B. - DOI - PubMed
- Hennecke U.; Rösner C.; Wald T.; Robert T.; Oestreich, M. 7.21 Addition Reactions with Formation of Carbonhalogen Bonds. In Comprehensive Organic Synthesis (Second Edition), Knochel P. Ed.; Elsevier, 2014; pp. 638–691.
-
-
For selected reviews, see
- Nilewski C.; Carreira E. M. Recent Advances in the Total Synthesis of Chlorosulfolipids. Eur. J. Org. Chem. 2012, 2012, 1685–1698. 10.1002/ejoc.201101525. - DOI
- Cresswell A. J.; Eey S. T. C.; Denmark S. E. Catalytic, Stereoselective Dihalogenation of Alkenes: Challenges and Opportunities. Angew. Chem., Int. Ed. 2015, 54, 15642–15682. 10.1002/anie.201507152. - DOI - PMC - PubMed
- Saikia I.; Borah A. J.; Phukan P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042. 10.1021/acs.chemrev.5b00400. - DOI - PubMed
- Bock J.; Guria S.; Wedek V.; Hennecke U. Enantioselective Dihalogenation of Alkenes. Chem. – Eur. J. 2021, 27, 4517–4530. 10.1002/chem.202003176. - DOI - PubMed
-
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources