Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 11;12(1):11729.
doi: 10.1038/s41598-022-13447-z.

Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021

Affiliations

Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021

V Caliendo et al. Sci Rep. .

Abstract

Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe, Africa and North America but are currently absent from South America and Oceania. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John's, Newfoundland and Labrador, Canada. Our phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Our analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Maximum likelihood phylogenetic tree of the H5 HA gene. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order. Clades are collapsed for clarity.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 2
Figure 2
Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.
Figure 3
Figure 3
Phylogenetic incongruence analyses. Maximum likelihood trees for the H and N gene segments and internal gene segments from equivalent strains were connected across the trees. Tips and connecting lines are coloured according to the legend.
Figure 4
Figure 4
Maps of transatlantic migration. Putative virus transmission pathways between Europe and Newfoundland via migratory waterfowl/shorebirds (a) and pelagic seabirds (b). Many Icelandic waterfowl and shorebirds (a) winter in Northwest Europe and return to Iceland to breed in spring (1), including whooper swans, greylag geese, pink-footed geese, Eurasian wigeons, Eurasian teals, northern pintails, common ringed plovers and purple sandpipers. Some bird populations use Iceland as a stopover site, and continue to breeding grounds in East Greenland (2; barnacle geese and pink-footed geese), the East Canadian Arctic (3; light-bellied brent geese, red knots, ruddy turnstones) and West Greenland (4; greater white-fronted geese). Migratory birds from Europe share these breeding areas with species that winter in North America, including Canada geese and snow geese from East Greenland and the East Canadian Arctic (5), and some Iceland-breeding species of duck, including small numbers of Eurasian wigeons, Eurasian teals, and tufted ducks (6). Several seabird species (b), such as gulls, skuas, fulmars and auks, have large breeding ranges in the Arctic. After the breeding season many species become fully pelagic and can roam large parts of the northern Atlantic. The mid-Atlantic ridge outside Newfoundland is an important non-breeding area for seabirds, and is frequented by auks from Iceland (7), Svalbard (8) and Norway (9), including large numbers of Atlantic puffins and Brünnich guillemots, and by black-legged kittiwakes and northern fulmars originating from Iceland, Norway and the United Kingdom (7–8, 10). There these birds are joined by seabirds from Canadian and Greenlandic waters (11). Direct migratory links to Newfoundland occurs through greater and lesser-black backed gulls as well as black-headed gulls from Iceland and Greenland (12, 13), and gulls also link the pelagic and the coastal zone around Newfoundland (14). Thickness of the lines highlights the relative approximate population sizes. Dashed lines show where small numbers of individuals, or vagrants, provide a potential pathway. For more details on species and population numbers see Table 2. This figure was prepared using the software R (version 4.0.5, https://www.r-project.org/) and the following packages: -ggplot2 (version 3.3.5, https://cran.r-project.org/web/packages/ggplot2/index.html), -sf (version 1.0.5, https://cran.r-project.org/web/packages/sf/index.html).

References

    1. Duan L, et al. The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology. 2008;380:243–254. doi: 10.1016/j.virol.2008.07.038. - DOI - PMC - PubMed
    1. Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in the global spread of avian influenza H5N8. Science354, 213–217. 10.1126/science.aaf8852 (2016). - PMC - PubMed
    1. Lycett SJ, et al. Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc. Natl. Acad. Sci. U S A. 2020;117:20814–20825. doi: 10.1073/pnas.2001813117. - DOI - PMC - PubMed
    1. Banyard AC, et al. Detection of highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b in Great Skuas: A species of conservation concern in Great Britain. Viruses. 2022;14:212. doi: 10.3390/v14020212. - DOI - PMC - PubMed
    1. EFSA (European Food Safety Authority) etal. EFSAScientificReport:AvianInfluenzaOverviewSeptember–December2021. 1–94. 10.2903/j.efsa.2021.7108 (2021). - PMC - PubMed

Publication types