Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 11:36:e097.
doi: 10.1590/1807-3107bor-2022.vol36.0097. eCollection 2022.

TiO2 nanotube-containing glass ionomer cements display reduced aluminum release rates

Affiliations
Free article

TiO2 nanotube-containing glass ionomer cements display reduced aluminum release rates

Ana Mara da Silva Morais et al. Braz Oral Res. .
Free article

Abstract

Titanium dioxide nanotubes (TiO2-nts) were incorporated into a glass ionomer cement (GIC) with improved mechanical properties and antibacterial activity. The aims of the present in vitro study were to define the elemental characterization, aluminum (Al) release rate, and initial working time for GIC reinforced with TiO2-nts, in an experimental caries model. TiO2-nts were incorporated into GIC powder components at 5% by weight, and compared with unblended GIC. Experimental approaches used energy-dispersive spectrometry (EDS), atomic absorption spectrophotometry (AAS), and brightness loss to define surface element properties, Al release rates, and initial working time, respectively. Statistical analysis was performed by 2-way ANOVA, Tukey's test, generalized linear models, and Student's t test (a = 0.05). EDS data analysis revealed that TiO2-nts incorporated into GIC had no significant impact on the typical elemental composition of GICs in an in vitro caries model. Regarding the demineralizing solution, GIC with TiO2-nt significantly decreased the Al release rate, compared with the control group (p < 0.0001). Moreover, TiO2-nt incorporated into GIC did not alter the initial working time of the material (p > 0.05). These findings add information to our scientific body of knowledge concerning the potential impact of TiO2-nt on the performance of conventional GICs.

PubMed Disclaimer

LinkOut - more resources