Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 1:319:115690.
doi: 10.1016/j.jenvman.2022.115690. Epub 2022 Jul 11.

Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation

Affiliations

Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation

Hira Zaman et al. J Environ Manage. .

Abstract

Due to the environmental and production problems of emulsion, it is important to efficiently separate oil-water emulsion to meet the refinery requirement and clean up oil spills. Synthesis of a universal demulsifier is not an easy task because the physical properties of crude oil vary, which makes its characterization and demulsification procedure difficult. To overcome this problem, hydrophilic and magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composite nanoparticles ((P(MMA-AA)/Fe3O4 NPs) were developed as an efficient and economical demulsifier via soap-free emulsion polymerization. To characterize the magnetic composite NPs for their appropriate surface morphology and magnetic domain, TEM, FTIR, VSM, and TGA analyses were carried out. The newly synthesized NPs displayed good hydrophilic properties as they migrated quickly to the aqueous emulsion phase, which was also reassured by their water contact angle of 75°. They exhibit strong magnetic characteristics (20 amu/g) in the oil-water emulsion, makings the hydrophilic wettability capable and attractive to the external magnet. Experimental results revealed that the prepared magnetic composite NPs separated 99% of the water from stable emulsion in 30 min and could be recycled 8 times through magnetic separation. The recycled magnetic composite NPs maintain their hydrophilic wettability and efficiency in separating oil-water emulsion, making them economical and commercially viable. The migration of magnetic composite NPs to the aqueous phase in the stable emulsion with a strong magnetic domain explains the coalescence of emulsified water droplets and their quick separation from the stable emulsions through the external magnet.

Keywords: Emulsion; Hydrophilic wettability; Magnetic composite nanoparticles; Multiphase separation; Oil-water separation.

PubMed Disclaimer

LinkOut - more resources