Contribution of chest compressions to end-tidal carbon dioxide levels generated during out-of-hospital cardiopulmonary resuscitation
- PMID: 35835250
- DOI: 10.1016/j.resuscitation.2022.07.009
Contribution of chest compressions to end-tidal carbon dioxide levels generated during out-of-hospital cardiopulmonary resuscitation
Abstract
Aim: Characterise how changes in chest compression depth and rate affect variations in end-tidal CO2 (ETCO2) during manual cardiopulmonary resuscitation (CPR) in out-of-hospital cardiac arrest (OHCA).
Methods: Retrospective analysis of adult OHCA monitor-defibrillator recordings having concurrent capnogram, compression depth, transthoracic impedance and ECG, and with atleast 1,000 compressions. Within each patient, during no spontaneous circulation, nearby segments with changes in chest compression depth and rate were identified. Average ETCO2 within each segment was standardised to compensate for ventilation rate variability. Contributions of relative variations in depth and rate to relative variations in standardised ETCO2 were characterised using linear and non-linear models. Normalisation between paired segments removed intra and inter-patient variation and made coefficients of the model independent of the scale of measurement and therefore directly comparable.
Results: A total of 394 pairs of segments from 221 patients were analysed (33% female, median (IQR) age 66 (55-74) years). Chest compression depth and rate were 50.4 (43.2-57.0)mm and 111.1 (106.5-116.1)compressions per minute. ETCO2 before and after standardization was 32.1 (23.0-41.4)mmHg and 28.5 (19.4-38.7)mmHg. Linear model coefficient of determination was 0.89. Variation in compression depth mainly explained ETCO2 variation (coefficient 0.95, 95% confidence interval (CI): 0.93-0.98) while changes in compression rate did not (coefficient 0.04, 95% CI: 0.01-0.07). Non-linear trend analysis confirmed the results.
Conclusion: This study quantified the relative importance of chest compression characteristics in terms of their impact on CO2 production during CPR. With ventilation rate standardised, variation in chest compression depth explained variations in ETCO2 better than variation in chest compression rate.
Keywords: Advanced life support (ALS); Cardiopulmonary resuscitation (CPR); Chest compression depth; Chest compression quality; Chest compression rate; End-tidal CO(2); Out-of-hospital cardiac arrest (OHCA); Ventilation rate.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Comment in
-
Riding the ETCO2 wave.Resuscitation. 2022 Oct;179:27-28. doi: 10.1016/j.resuscitation.2022.07.033. Epub 2022 Jul 30. Resuscitation. 2022. PMID: 35917867 No abstract available.
Similar articles
-
The impact of ventilation rate on end-tidal carbon dioxide level during manual cardiopulmonary resuscitation.Resuscitation. 2020 Nov;156:215-222. doi: 10.1016/j.resuscitation.2020.06.007. Epub 2020 Jul 1. Resuscitation. 2020. PMID: 32622015
-
Modeling the impact of ventilations on the capnogram in out-of-hospital cardiac arrest.PLoS One. 2020 Feb 5;15(2):e0228395. doi: 10.1371/journal.pone.0228395. eCollection 2020. PLoS One. 2020. PMID: 32023298 Free PMC article.
-
Association between Prehospital CPR Quality and End-Tidal Carbon Dioxide Levels in Out-of-Hospital Cardiac Arrest.Prehosp Emerg Care. 2016 May-Jun;20(3):369-77. doi: 10.3109/10903127.2015.1115929. Epub 2016 Feb 1. Prehosp Emerg Care. 2016. PMID: 26830353
-
Capnography during cardiac arrest.Resuscitation. 2018 Nov;132:73-77. doi: 10.1016/j.resuscitation.2018.08.018. Epub 2018 Aug 22. Resuscitation. 2018. PMID: 30142399 Review.
-
[New mechanical methods for cardiopulmonary resuscitation (CPR). Literature study and analysis of effectiveness].Anaesthesist. 1997 Mar;46(3):220-30. doi: 10.1007/s001010050395. Anaesthesist. 1997. PMID: 9163267 Review. German.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous