Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 22;32(16):3529-3544.e2.
doi: 10.1016/j.cub.2022.06.061. Epub 2022 Jul 14.

Neuronal circuits integrating visual motion information in Drosophila melanogaster

Affiliations
Free article

Neuronal circuits integrating visual motion information in Drosophila melanogaster

Kazunori Shinomiya et al. Curr Biol. .
Free article

Abstract

The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.

Keywords: motion vision, Drosophila melanogaster, lobula plate, connectomics, T4/T5 neurons.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Comment in

Publication types

MeSH terms

LinkOut - more resources