Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds
- PMID: 35841607
- DOI: 10.1002/adhm.202201323
Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds
Abstract
Diabetic foot ulcer (DFU) treatment is challenged by persistent bacterial infection and hyperglycemia-caused vascular dysplasia. Herein, self-propelled nanomotors are designed to achieve biofilm microenvironment (BME)-activated multistage release of NO for effective sterilization and subsequent angiogenesis promotion. CaO2 nanoparticles (NPs) are capped with PDA layers, followed by complexation with Fe2+ and surface grafting of cysteine-NO to obtain Janus Ca@PDAFe -CNO NPs. In response to low pH in BME, the decomposition of CaO2 cores generates O2 from one side of Janus NPs to propel biofilm penetration, and the released H2 O2 and Fe2+ produce •OH through Fenton reaction. The concurrent glutathione-triggered release of NO can be converted into reactive nitrogen species, which exhibit significantly higher bactericidal efficacy than those with only generation of •OH or NO. The slow release of NO for an extended time period promotes endothelial cell proliferation and migration. On Staphylococcus aureus-infected skin wounds of diabetic mice, NP treatment eliminates bacterial infections and significantly elevates blood vessel densities, leading to full wound recovery and regeneration of arranged collagen fibers and skin accessories. Thus, the self-propelling and multistage release of NO provide a feasible strategy to combat biofilm infection without using any antibiotics and accelerate angiogenesis and wound healing for DFU treatment.
Keywords: Janus nanomotors; biofilm infiltration; diabetic foot ulcers; multistage NO release.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin removal to treat infected burn wounds.J Mater Chem B. 2022 Jun 8;10(22):4189-4202. doi: 10.1039/d2tb00555g. J Mater Chem B. 2022. PMID: 35575383
-
A bacteria-responsive nanoplatform with biofilm dispersion and ROS scavenging for the healing of infected diabetic wounds.Acta Biomater. 2025 Jan 24;193:545-558. doi: 10.1016/j.actbio.2024.12.042. Epub 2024 Dec 20. Acta Biomater. 2025. PMID: 39710222
-
A Zn-MOF-GOx-based cascade nanoreactor promotes diabetic infected wound healing by NO release and microenvironment regulation.Acta Biomater. 2024 Jul 1;182:245-259. doi: 10.1016/j.actbio.2024.05.015. Epub 2024 May 9. Acta Biomater. 2024. PMID: 38729545
-
Bacterial Contribution in Chronicity of Wounds.Microb Ecol. 2017 Apr;73(3):710-721. doi: 10.1007/s00248-016-0867-9. Epub 2016 Oct 14. Microb Ecol. 2017. PMID: 27742997 Review.
-
Strategy for Treatment of Infected Diabetic Foot Ulcers.Acc Chem Res. 2021 Mar 2;54(5):1080-1093. doi: 10.1021/acs.accounts.0c00864. Epub 2021 Feb 17. Acc Chem Res. 2021. PMID: 33596041 Review.
Cited by
-
Microrobots for Antibiotic-Resistant Staphylococcus aureus Skin Colony Eradication.ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39340-39348. doi: 10.1021/acsami.5c08683. Epub 2025 Jun 25. ACS Appl Mater Interfaces. 2025. PMID: 40560979 Free PMC article.
-
Technology Roadmap of Micro/Nanorobots.ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27. ACS Nano. 2025. PMID: 40577644 Free PMC article. Review.
-
Antibacterial micro/nanomotors: current research progress, challenges, and opportunities.Theranostics. 2024 Jan 1;14(3):1029-1048. doi: 10.7150/thno.92449. eCollection 2024. Theranostics. 2024. PMID: 38250044 Free PMC article. Review.
-
Novel Biomaterials for Wound Healing and Tissue Regeneration.ACS Omega. 2024 Jul 16;9(30):32268-32286. doi: 10.1021/acsomega.4c02775. eCollection 2024 Jul 30. ACS Omega. 2024. PMID: 39100297 Free PMC article. Review.
-
Antibacterial Chemodynamic Therapy: Materials and Strategies.BME Front. 2023 Jul 17;4:0021. doi: 10.34133/bmef.0021. eCollection 2023. BME Front. 2023. PMID: 37849674 Free PMC article. Review.
References
-
- L. Kong, Z. Wu, H. Zhao, H. Cui, J. Shen, J. Chang, H. Li, Y. He, ACS Appl. Mater. Interfaces 2018, 10, 30103.
-
- Y. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y. Xue, C. Lin, B. Lei, ACS Nano 2020, 14, 2904.
-
- T. Shen, K. Dai, Y. Yu, J. Wang, C. Liu, Acta Biomater. 2020, 117, 192.
-
- L. R. Thurlow, M. L. Hanke, T. Fritz, A. Angle, A. Aldrich, S. H. Williams, I. L. Engebretsen, K. W. Bayles, A. R. Horswill, T. Kielian, J. Immunol. 2011, 186, 6585.
-
- W. Xiu, J. Shan, K. Yang, H. Xiao, L. Yuwen, L. Wang, View 2020, 2, 20200065.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous