Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;11(19):e2201323.
doi: 10.1002/adhm.202201323. Epub 2022 Jul 27.

Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds

Affiliations

Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds

Shuang Xie et al. Adv Healthc Mater. 2022 Oct.

Abstract

Diabetic foot ulcer (DFU) treatment is challenged by persistent bacterial infection and hyperglycemia-caused vascular dysplasia. Herein, self-propelled nanomotors are designed to achieve biofilm microenvironment (BME)-activated multistage release of NO for effective sterilization and subsequent angiogenesis promotion. CaO2 nanoparticles (NPs) are capped with PDA layers, followed by complexation with Fe2+ and surface grafting of cysteine-NO to obtain Janus Ca@PDAFe -CNO NPs. In response to low pH in BME, the decomposition of CaO2 cores generates O2 from one side of Janus NPs to propel biofilm penetration, and the released H2 O2 and Fe2+ produce •OH through Fenton reaction. The concurrent glutathione-triggered release of NO can be converted into reactive nitrogen species, which exhibit significantly higher bactericidal efficacy than those with only generation of •OH or NO. The slow release of NO for an extended time period promotes endothelial cell proliferation and migration. On Staphylococcus aureus-infected skin wounds of diabetic mice, NP treatment eliminates bacterial infections and significantly elevates blood vessel densities, leading to full wound recovery and regeneration of arranged collagen fibers and skin accessories. Thus, the self-propelling and multistage release of NO provide a feasible strategy to combat biofilm infection without using any antibiotics and accelerate angiogenesis and wound healing for DFU treatment.

Keywords: Janus nanomotors; biofilm infiltration; diabetic foot ulcers; multistage NO release.

PubMed Disclaimer

Similar articles

Cited by

  • Microrobots for Antibiotic-Resistant Staphylococcus aureus Skin Colony Eradication.
    Jancik-Prochazkova A, Michalkova H, Cihalova K, Heger Z, Pumera M. Jancik-Prochazkova A, et al. ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39340-39348. doi: 10.1021/acsami.5c08683. Epub 2025 Jun 25. ACS Appl Mater Interfaces. 2025. PMID: 40560979 Free PMC article.
  • Technology Roadmap of Micro/Nanorobots.
    Ju X, Chen C, Oral CM, Sevim S, Golestanian R, Sun M, Bouzari N, Lin X, Urso M, Nam JS, Cho Y, Peng X, Landers FC, Yang S, Adibi A, Taz N, Wittkowski R, Ahmed D, Wang W, Magdanz V, Medina-Sánchez M, Guix M, Bari N, Behkam B, Kapral R, Huang Y, Tang J, Wang B, Morozov K, Leshansky A, Abbasi SA, Choi H, Ghosh S, Borges Fernandes B, Battaglia G, Fischer P, Ghosh A, Jurado Sánchez B, Escarpa A, Martinet Q, Palacci J, Lauga E, Moran J, Ramos-Docampo MA, Städler B, Herrera Restrepo RS, Yossifon G, Nicholas JD, Ignés-Mullol J, Puigmartí-Luis J, Liu Y, Zarzar LD, Shields CW 4th, Li L, Li S, Ma X, Gracias DH, Velev O, Sánchez S, Esplandiu MJ, Simmchen J, Lobosco A, Misra S, Wu Z, Li J, Kuhn A, Nourhani A, Maric T, Xiong Z, Aghakhani A, Mei Y, Tu Y, Peng F, Diller E, Sakar MS, Sen A, Law J, Sun Y, Pena-Francesch A, Villa K, Li H, Fan DE, Liang K, Huang TJ, Chen XZ, Tang S, Zhang X, Cui J, Wang H, Gao W, Kumar Bandari V, Schmidt OG, Wu X, Guan J, Sitti M, Nelson BJ, Pané S, Zhang L, Shahsavan H, He Q, Kim ID, Wang J, Pumera M. Ju X, et al. ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27. ACS Nano. 2025. PMID: 40577644 Free PMC article. Review.
  • Antibacterial micro/nanomotors: current research progress, challenges, and opportunities.
    Liu XY, Li RF, Jia J, Yu ZL. Liu XY, et al. Theranostics. 2024 Jan 1;14(3):1029-1048. doi: 10.7150/thno.92449. eCollection 2024. Theranostics. 2024. PMID: 38250044 Free PMC article. Review.
  • Novel Biomaterials for Wound Healing and Tissue Regeneration.
    Zhong Y, Wei ET, Wu L, Wang Y, Lin Q, Wu N, Chen H, Tang N. Zhong Y, et al. ACS Omega. 2024 Jul 16;9(30):32268-32286. doi: 10.1021/acsomega.4c02775. eCollection 2024 Jul 30. ACS Omega. 2024. PMID: 39100297 Free PMC article. Review.
  • Antibacterial Chemodynamic Therapy: Materials and Strategies.
    Jia C, Wu FG. Jia C, et al. BME Front. 2023 Jul 17;4:0021. doi: 10.34133/bmef.0021. eCollection 2023. BME Front. 2023. PMID: 37849674 Free PMC article. Review.

References

    1. L. Kong, Z. Wu, H. Zhao, H. Cui, J. Shen, J. Chang, H. Li, Y. He, ACS Appl. Mater. Interfaces 2018, 10, 30103.
    1. Y. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y. Xue, C. Lin, B. Lei, ACS Nano 2020, 14, 2904.
    1. T. Shen, K. Dai, Y. Yu, J. Wang, C. Liu, Acta Biomater. 2020, 117, 192.
    1. L. R. Thurlow, M. L. Hanke, T. Fritz, A. Angle, A. Aldrich, S. H. Williams, I. L. Engebretsen, K. W. Bayles, A. R. Horswill, T. Kielian, J. Immunol. 2011, 186, 6585.
    1. W. Xiu, J. Shan, K. Yang, H. Xiao, L. Yuwen, L. Wang, View 2020, 2, 20200065.

Publication types

LinkOut - more resources