Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul;36(4):604-612.
doi: 10.1016/j.aucc.2022.06.001. Epub 2022 Jul 14.

Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury

Affiliations

Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury

Sai Huang et al. Aust Crit Care. 2023 Jul.

Abstract

Background: Currently, very few preventive or therapeutic strategies are used for mechanical ventilation (MV)-associated severe acute kidney injury (AKI).

Objectives: We developed clinical prediction models to detect the onset of severe AKI in the first week of intensive care unit (ICU) stay during the initiation of MV.

Methods: A large ICU database Medical Information Mart for Intensive Care IV (MIMIC-IV) was analysed retrospectively. Data were collected from the clinical information recorded at the time of ICU admission and during the initial 12 h of MV. Using univariate and multivariate analyses, the predictors were selected successively. For model development, two machine learning algorithms were compared. The primary goal was to predict the development of AKI stage 2 or 3 (AKI-23) and AKI stage 3 (AKI-3) in the first week of patients' ICU stay after initial 12 h of MV. The developed models were externally validated using another multicentre ICU database (eICU Collaborative Research Database, eICU) and evaluated in various patient subpopulations.

Results: Models were developed using data from the development cohort (MIMIC-IV: 2008-2016; n = 3986); the random forest algorithm outperformed the logistic regression algorithm. In the internal (MIMIC-IV: 2017-2019; n = 1210) and external (eICU; n = 1494) validation cohorts, the incidences of AKI-23 were 154 (12.7%) and 119 (8.0%), respectively, with areas under the receiver operator characteristic curve of 0.78 (95% confidence interval [CI]: 0.74-0.82) and 0.80 (95% CI: 0.76-0.84); the incidences of AKI-3 were 81 (6.7%) and 67 (4.5%), with areas under the receiver operator characteristic curve of 0.81 (95% CI: 0.76-0.87) and 0.80 (95% CI: 0.73-0.86), respectively.

Conclusions: Models driven by machine learning and based on routine clinical data may facilitate the early prediction of MV-associated severe AKI. The validated models can be found at: https://apoet.shinyapps.io/mv_aki_2021_v2/.

Keywords: Machine learning; Mechanical ventilation; Prediction model; Severe acute kidney injury.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources