Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun 30:13:929895.
doi: 10.3389/fimmu.2022.929895. eCollection 2022.

Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies

Affiliations
Review

Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies

Josée Golay et al. Front Immunol. .

Abstract

The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.

Keywords: ADCC; IgG; N-glycan; NK cells; fucosylation; humoral response; therapeutic antibodies; virus.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
The IgG Asn-297 N-glycan heterogeneity. Panel (A) major types of N-glycosylation observed in IgG. Panel (B) detail of complex type glycosylation with percentage of circulating IgG containing either fucose or bisecting N-Acetylglucosamine. The orange circle indicates the core structure. The blue broken lines and text indicate the heterogeneity of complex N-glycans, carrying either no Gal (G0), 1-2 Gal (G1/2), 1-2 Sialic acids (S1/2), with (F) or without core α-1,6-fucose.
Figure 2
Figure 2
Simplified scheme of enzymatic reactions involved in N-linked glycosylation of IgG. The major glycosylation steps and enzymes involved in N- linked glycosylation of IgGs taking place in ER and Golgi are shown. GnT, N-Acetyl glucosamine transferase; FUT, Fucosyl transferase; Man, Mannose; Gal, Galactose; GlcNAcm N-acetylglucosamine; SA, sialic acid (N-Acetylneuraminic Acid).
Figure 3
Figure 3
Major pathways of GDP-fucose biosynthesis and IgG Fc core fucosylation. FUK, Fucose Kinase; GDPP, GDP-fucose-pyrophosphorylase; GMD, GDP-mannose 4,6 dehydratase; FX, GDP-4-keto 6-deoxymannose 3,5-epimerase-4-reductase; FUT, Fucosyltransferase.
Figure 4
Figure 4
Major mechanisms of action of Fc core afucosylated IgG1 antibodies. IgG1 antibodies lacking Fc core α-1,6-fucose show a 10-100 fold increased binding to FcɣRIIIA and FcɣRIIIB on the indicated immune cells (NK, monocytes/macrophages and PMN), which results in increased ADCC by NK cells, enhanced competition with plasma IgGs, increased PMN activation, increased inhibition of FcγRIIA-mediated ADCC by PMN, induced by some antibodies (e.g. anti-EGFR mAbs). The effect of monocyte/macrophage induced ADCP is less clear. Low Fc core fucose can also increase release of cytokines, such as IL-6, TNF-α and IL-8, both in vitro and in vivo.

References

    1. Vidarsson G, Dekkers G, Rispens T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front Immunol (2014) 5:520. doi: 10.3389/fimmu.2014.00520 - DOI - PMC - PubMed
    1. Pezer M, Pezer M. Immunoglobulin G Glycosylation in Diseases. In: Antibody Glycosylation, vol. 112. . Cham: Springer International Publishing; (2021). doi: 10.1007/978-3-030-76912-3_13 - DOI
    1. Gudelj I, Lauc G, Pezer M. Immunoglobulin G Glycosylation in Aging and Diseases. Cell Immunol (2018) 333:65−79. doi: 10.1016/j.cellimm.2018.07.009 - DOI - PubMed
    1. Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to Watch in 2022. mAbs (2022) 14(1):2014296. doi: 10.1080/19420862.2021.2014296 - DOI - PMC - PubMed
    1. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. . Specificity and Affinity of Human Fcgamma Receptors and Their Polymorphic Variants for Human IgG Subclasses. Blood (2009) 113(16):3716–25. doi: 10.1182/blood-2008-09-179754 - DOI - PubMed

Publication types