Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun 30:13:917113.
doi: 10.3389/fendo.2022.917113. eCollection 2022.

Diabetic Muscular Atrophy: Molecular Mechanisms and Promising Therapies

Affiliations
Review

Diabetic Muscular Atrophy: Molecular Mechanisms and Promising Therapies

Yuntian Shen et al. Front Endocrinol (Lausanne). .

Abstract

Diabetes mellitus (DM) is a typical chronic disease that can be divided into 2 types, dependent on insulin deficiency or insulin resistance. Incidences of diabetic complications gradually increase as the disease progresses. Studies in diabetes complications have mostly focused on kidney and cardiovascular diseases, as well as neuropathy. However, DM can also cause skeletal muscle atrophy. Diabetic muscular atrophy is an unrecognized diabetic complication that can lead to quadriplegia in severe cases, seriously impacting patients' quality of life. In this review, we first identify the main molecular mechanisms of muscle atrophy from the aspects of protein degradation and synthesis signaling pathways. Then, we discuss the molecular regulatory mechanisms of diabetic muscular atrophy, and outline potential drugs and treatments in terms of insulin resistance, insulin deficiency, inflammation, oxidative stress, glucocorticoids, and other factors. It is worth noting that inflammation and oxidative stress are closely related to insulin resistance and insulin deficiency in diabetic muscular atrophy. Regulating inflammation and oxidative stress may represent another very important way to treat diabetic muscular atrophy, in addition to controlling insulin signaling. Understanding the molecular regulatory mechanism of diabetic muscular atrophy could help to reveal new treatment strategies.

Keywords: diabetes mellitus; inflammation; molecular mechanism; muscle atrophy; treatment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Key pathways involved in Diabetic muscular atrophy.

Similar articles

Cited by

References

    1. Fujimaki S, Wakabayashi T, Takemasa T, Asashima M, Kuwabara T. Diabetes and Stem Cell Function. BioMed Res Int (2015) 2015:592915. doi: 10.1155/2015/592915 - DOI - PMC - PubMed
    1. Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol (Lausanne) (2020) 11:568. doi: 10.3389/fendo.2020.00568 - DOI - PMC - PubMed
    1. Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev (2022) 18:e030821192146. doi: 10.2174/1573399817666210309104203 - DOI - PubMed
    1. O'Neill BT, Bhardwaj G, Penniman CM, Krumpoch MT, Suarez Beltran PA, Klaus K, et al. . Foxo Transcription Factors are Critical Regulators of Diabetes-Related Muscle Atrophy. Diabetes (2019) 68:556–70. doi: 10.2337/db18-0416 - DOI - PMC - PubMed
    1. Yin L, Li N, Jia W, Wang N, Liang M, Yang X, et al. . Skeletal Muscle Atrophy: From Mechanisms to Treatments. Pharmacol Res (2021) 172:105807. doi: 10.1016/j.phrs.2021.105807 - DOI - PubMed

Publication types