Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;41(12):3636-3648.
doi: 10.1109/TMI.2022.3192072. Epub 2022 Dec 2.

Deep and Domain Transfer Learning Aided Photoacoustic Microscopy: Acoustic Resolution to Optical Resolution

Deep and Domain Transfer Learning Aided Photoacoustic Microscopy: Acoustic Resolution to Optical Resolution

Zhengyuan Zhang et al. IEEE Trans Med Imaging. 2022 Dec.

Abstract

Acoustic resolution photoacoustic micros- copy (AR-PAM) can achieve deeper imaging depth in biological tissue, with the sacrifice of imaging resolution compared with optical resolution photoacoustic microscopy (OR-PAM). Here we aim to enhance the AR-PAM image quality towards OR-PAM image, which specifically includes the enhancement of imaging resolution, restoration of micro-vasculatures, and reduction of artifacts. To address this issue, a network (MultiResU-Net) is first trained as generative model with simulated AR-OR image pairs, which are synthesized with physical transducer model. Moderate enhancement results can already be obtained when applying this model to in vivo AR imaging data. Nevertheless, the perceptual quality is unsatisfactory due to domain shift. Further, domain transfer learning technique under generative adversarial network (GAN) framework is proposed to drive the enhanced image's manifold towards that of real OR image. In this way, perceptually convincing AR to OR enhancement result is obtained, which can also be supported by quantitative analysis. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values are significantly increased from 14.74 dB to 19.01 dB and from 0.1974 to 0.2937, respectively, validating the improvement of reconstruction correctness and overall perceptual quality. The proposed algorithm has also been validated across different imaging depths with experiments conducted in both shallow and deep tissue. The above AR to OR domain transfer learning with GAN (AODTL-GAN) framework has enabled the enhancement target with limited amount of matched in vivo AR-OR imaging data.

PubMed Disclaimer

Similar articles

Cited by

Publication types