Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec;178(10):1055-1065.
doi: 10.1016/j.neurol.2022.03.015. Epub 2022 Jul 17.

Therapeutic ultrasound: The future of epilepsy surgery?

Affiliations
Review

Therapeutic ultrasound: The future of epilepsy surgery?

A Bex et al. Rev Neurol (Paris). 2022 Dec.

Abstract

Epilepsy is one of the leading neurological diseases in both adults and children and in spite of advancement in medical treatment, 20 to 30% of patients remain refractory to current medical treatment. Medically intractable epilepsy has a real impact on a patient's quality of life, neurologic morbidity and even mortality. Actual therapy options are an increase in drug dosage, radiosurgery, resective surgery and non-resective neuromodulatory treatments (deep brain stimulation, vagus nerve stimulation). Resective, thermoablative or neuromodulatory surgery in the treatment of epilepsy are invasive procedures, sometimes requiring long stay-in for the patients, risks of permanent neurological deficit, general anesthesia and other potential surgery-related complications such as a hemorrhage or an infection. Radiosurgical approaches can trigger radiation necrosis, brain oedema and transient worsening of epilepsy. With technology-driven developments and pursuit of minimally invasive neurosurgery, transcranial MR-guided focused ultrasound has become a valuable treatment for neurological diseases. In this critical review, we aim to give the reader a better understanding of current advancement for ultrasound in the treatment of epilepsy. By outlining the current understanding gained from both preclinical and clinical studies, this article explores the different mechanisms and potential applications (thermoablation, blood brain barrier disruption for drug delivery, neuromodulation and cortical stimulation) of high and low intensity ultrasound and compares the various possibilities available to patients with intractable epilepsy. Technical limitations of therapeutic ultrasound for epilepsy surgery are also detailed and discussed.

Keywords: Blood-brain barrier opening; Drug-resistant epilepsy; HIFU; Innovative technologies; Neuromodulation; Noninvasive approach; Thermoablation.

PubMed Disclaimer

LinkOut - more resources