Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb;16(1):39-54.
doi: 10.1007/BF02456696.

Neuronal structure and synaptic distribution of a uropod closer motor neuron in the crayfish terminal ganglion

Neuronal structure and synaptic distribution of a uropod closer motor neuron in the crayfish terminal ganglion

Y Kondoh et al. J Neurocytol. 1987 Feb.

Abstract

One of the uropod closer muscles in the crayfish, the adductor exopodite, is innervated by two large identified motor neurons. They were injected intracellularly with horseradish peroxidase or nickel chloride to reveal the structure and distribution of the input and output synapses using electron microscopy. The development of nickel with rubeanic acid greatly improved the tissue preservation at the ultrastructural level compared with ammonium sulphide. Cell bodies of the motor neurons lying in the ventro-lateral cortex of the ganglion are extensively invaginated by glial cells. Input synapses occur directly upon the primary neurite within the neuropil or upon the major anterior neurite. They are most abundant, however, upon the numerous smaller neurites of the motor neuron. The primary neurite in the dorsal region of the neuropil, upon which no synapses were made, is wrapped with glial cells. Occasionally, these two adductor exopodite motor neurons were found as adjacent postsynaptic profiles at the same synapse when both cells were stained simultaneously in the same preparation. In the present study we could not locate any sites of synaptic output which strictly fulfil the structural criteria of a synapse on the processes of the motor neuron. This result is inconsistent with physiological evidence which suggests that spikeless interactions occur between the two adductor exopodite motor neurons and their synergists. This might be the result of two possible features of the interaction: the sites of synaptic output may be limited to a few restricted branches, and the interaction between these motor neurons may depend largely upon electrical synapses.

PubMed Disclaimer

Similar articles

Publication types