Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep;34(36):e2204460.
doi: 10.1002/adma.202204460. Epub 2022 Aug 8.

Red Perovskite Light-Emitting Diodes with Efficiency Exceeding 25% Realized by Co-Spacer Cations

Affiliations

Red Perovskite Light-Emitting Diodes with Efficiency Exceeding 25% Realized by Co-Spacer Cations

Ji Jiang et al. Adv Mater. 2022 Sep.

Abstract

Perovskite light-emitting diodes (PeLEDs) have received great attention in recent years due to their narrow emission bandwidth and tunable emission spectrum. Efficient red emission is one of most important parts for lighting and displays. Quasi-2D perovskites can deliver high emission efficiency due to the strong carrier confinement, while the external quantum efficiencies (EQE) of red quasi-2D PeLEDs are inefficient at present, which is due to the complex distribution of different n-value phases in quasi-2D perovskite films. In this work, the phase distribution of the quasi-2D perovskite is finely controlled by mixing two different large organic cations, which effectively reduces the amount of smaller n-index phases, meanwhile the passivation of lead and halide defects in perovskite films is realized. Accordingly, the PeLEDs show 25.8% EQE and 1300 cd m-2 maximum brightness at 680 nm, which exhibits the highest performance for red PeLEDs up to now.

Keywords: co-spacer cations; electroluminescence; light-emitting diodes; quasi-2D perovskites.

PubMed Disclaimer

Similar articles

Cited by

References

    1. H. Min, D. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2021, 598, 444.
    1. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, J. Phys. Chem. Lett. 2014, 5, 1421.
    1. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
    1. B. R. Sutherland, E. H. Sargent, Nat. Photonics 2016, 10, 295.
    1. C. Kuang, Z. Hu, Z. Yuan, K. Wen, J. Qing, L. Kobera, S. Abbrent, J. Brus, C. Yin, H. Wang, W. Xu, J. Wang, S. Bai, F. Gao, Joule 2021, 5, 618.

LinkOut - more resources