Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep:167:107413.
doi: 10.1016/j.envint.2022.107413. Epub 2022 Jul 16.

Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction

Affiliations
Free article

Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction

Yu-Ting Zhou et al. Environ Int. 2022 Sep.
Free article

Abstract

Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated compound that is extensively used as an integral surfactant in commercial production. Owing to its hydrophilicity and persistence, PFOA can accumulate in living organisms and induce severe disease in animals and humans. It has been reported that PFOA exposure can affect ovarian function and induce reproductive toxicity; however, the effects and potential mechanism of PFOA exposure during gestation on early embryonic development and offspring remain unclear. This study found that PFOA exposure in vitro disrupted spindle assembly and chromosome alignment during the first cleavage of early mouse embryos, which impacted early embryonic cleavage and blastocyst formation. Moreover, PFOA exposure caused mitochondrial dysfunction and oxidative stress by inducing aberrant Ca2+ levels, liquid drops(LDs), and mitochondrial membrane potential in the 2-cell stage. Furthermore, we found that PFOA exposure resulted in DNA damage, autophagy, and apoptosis in 2-cell stage by inhibiting SOD2 function. Gestational exposure to PFOA significantly increased ovarian apoptosis and disrupted follicle development in F1 offspring. In addition, oocyte maturation competence was decreased in F1 offspring. Finally, single-cell transcriptome analysis revealed that PFOA-induced oocyte deterioration was caused by mitochondrial dysfunction and apoptosis in the F1 offspring. In summary, our results indicated that gestational exposure to PFOA had potential toxic effects on ovarian function and led to a higher incidence of meiotic defects in F1 female offspring.

Keywords: Apoptosis; Autophagy; Early embryonic development; Mitochondria; PFOA.

PubMed Disclaimer

Publication types

LinkOut - more resources