Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul;28(7):1447-1454.
doi: 10.1038/s41591-022-01895-z. Epub 2022 Jul 21.

Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

Affiliations

Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

Katharine E Henry et al. Nat Med. 2022 Jul.

Abstract

Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3 h had a 1.85-h (95% CI 1.66-2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3 h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers' knowledge of, experience with and attitudes toward such systems.

PubMed Disclaimer

Comment in

  • Harnessing AI in sepsis care.
    Bates DW, Syrowatka A. Bates DW, et al. Nat Med. 2022 Jul;28(7):1351-1352. doi: 10.1038/s41591-022-01878-0. Nat Med. 2022. PMID: 35864250 No abstract available.

Similar articles

Cited by

References

    1. Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A. & Escobar, G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33, 1123–1131 (2014). - DOI
    1. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019). - PubMed - DOI
    1. Liang, H. et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 24, 443–448 (2019).
    1. Bauer, M. et al. Automation to optimise physician treatment of individual patients: examples in psychiatry. Lancet Psychiat. 6, 338–349 (2019). - DOI
    1. Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317–1318 (2019). - DOI

Publication types

LinkOut - more resources