Detecting microstructural deviations in individuals with deep diffusion MRI tractometry
- PMID: 35865756
- PMCID: PMC7613101
- DOI: 10.1038/s43588-021-00126-8
Detecting microstructural deviations in individuals with deep diffusion MRI tractometry
Abstract
Most diffusion magnetic resonance imaging studies of disease rely on statistical comparisons between large groups of patients and healthy participants to infer altered tissue states in the brain; however, clinical heterogeneity can greatly challenge their discriminative power. There is currently an unmet need to move away from the current approach of group-wise comparisons to methods with the sensitivity to detect altered tissue states at the individual level. This would ultimately enable the early detection and interpretation of microstructural abnormalities in individual patients, an important step towards personalized medicine in translational imaging. To this end, Detect was developed to advance diffusion magnetic resonance imaging tractometry towards single-patient analysis. By operating on the manifold of white-matter pathways and learning normative microstructural features, our framework captures idiosyncrasies in patterns along white-matter pathways. Our approach paves the way from traditional group-based comparisons to true personalized radiology, taking microstructural imaging from the bench to the bedside.
Conflict of interest statement
Competing interests The authors declare no competing interests.
Figures






References
-
- Kia S, Marquand A. In: Cardoso MJ, et al., editors. Neural processes mixed-effect models for deep normative modeling of clinical neuroimaging data; Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning; 2019. pp. 297–314.
Grants and funding
LinkOut - more resources
Full Text Sources