Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 15;13(26):7947-7954.
doi: 10.1039/d2sc02291e. eCollection 2022 Jul 6.

Cobalt-catalyzed chemoselective dehydrogenation through radical translocation under visible light

Affiliations

Cobalt-catalyzed chemoselective dehydrogenation through radical translocation under visible light

Wan-Lei Yu et al. Chem Sci. .

Abstract

The transformations that allow the direct removal of hydrogen from their corresponding saturated counterparts by the dehydrogenative strategy are a dream reaction that has remained largely underexplored. In this report, a straightforward and robust cobaloxime-catalyzed photochemical dehydrogenation strategy via intramolecular HAT is described for the first time. The reaction proceeds through an intramolecular radical translocation followed by the cobalt assisted dehydrogenation without needing any other external photosensitizers, noble-metals or oxidants. With this approach, a series of valuable unsaturated compounds such as α,β-unsaturated amides, enamides and allylic and homoallylic sulfonamides were obtained in moderate to excellent yields with good chemo- and regioselectivities, and the synthetic versatility was demonstrated by a range of transformations. And mechanistic studies of the method are discussed.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Dehydrogenation strategies for alkene synthesis.
Scheme 2
Scheme 2. Proposed reaction mechanism.

Similar articles

Cited by

References

    1. Weissermel K. and Arpe H.-J., Olefins, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2008, p. 59
    1. Kim C. Dong Y. Que L. J. Am. Chem. Soc. 1997;119:3635–3636. doi: 10.1021/ja963578a. - DOI
    2. Buist P. H. Nat. Prod. Rep. 2004;21:249–262. doi: 10.1039/B302094K. - DOI - PubMed
    3. Bigi M. A. Reed S. A. White M. C. Nat. Chem. 2011;3:216–222. doi: 10.1038/nchem.967. - DOI - PubMed
    1. Breslow R. Snider B. B. Corcoran R. J. J. Am. Chem. Soc. 1974;96:6792–6794. doi: 10.1021/ja00828a059. - DOI - PubMed
    2. Voica A.-F. Mendoza A. Gutekunst W. R. Fraga J. O. Baran P. S. Nat. Chem. 2012;4:629–635. doi: 10.1038/nchem.1385. - DOI - PMC - PubMed
    3. Parasram M. Chuentragool P. Sarkar D. Gevorgyan V. J. Am. Chem. Soc. 2016;138:6340–6343. doi: 10.1021/jacs.6b01628. - DOI - PMC - PubMed
    4. Parasram M. Chuentragool P. Wang Y. Shi Y. Gevorgyan V. J. Am. Chem. Soc. 2017;139:14857–14860. doi: 10.1021/jacs.7b08459. - DOI - PMC - PubMed
    5. Chuentragool P. Parasram M. Shi Y. Gevorgyan V. J. Am. Chem. Soc. 2018;140:2465–2468. doi: 10.1021/jacs.8b00488. - DOI - PMC - PubMed
    6. Xia Y. Jana K. Studer A. Chem.–Eur. J. 2021;27:16621–16625. doi: 10.1002/chem.202103509. - DOI - PMC - PubMed
    7. Stateman L. M. Dare R. M. Paneque A. N. Nagib D. A. Chem. 2022;8:210–224. doi: 10.1016/j.chempr.2021.10.022. - DOI - PMC - PubMed
    1. Zhou M.-J. Zhang L. Liu G. Xu C. Huang Z. J. Am. Chem. Soc. 2021;143:16470–16485. doi: 10.1021/jacs.1c05479. - DOI - PubMed
    2. West J. G. Huang D. Sorensen E. J. Nat. Commun. 2015;6:10093–10099. doi: 10.1038/ncomms10093. - DOI - PMC - PubMed
    3. Huang L. Bismuto A. Rath S. A. Trapp N. Morandi B. Angew. Chem., Int. Ed. 2021;60:7290–7296. doi: 10.1002/anie.202015837. - DOI - PMC - PubMed
    1. Cheng W.-M. Shang R. ACS Catal. 2020;10:9170–9196. doi: 10.1021/acscatal.0c01979. - DOI
    2. Pak K. Cheung S. Sarkar S. Gevorgyan V. Chem. Rev. 2022;122:1543–1625. doi: 10.1021/acs.chemrev.1c00403. - DOI - PMC - PubMed