Rational design of a dual-reactive probe for imaging the biogenesis of both H2S and GSH from l-Cys rather than d-Cys in live cells
- PMID: 35866170
- PMCID: PMC9257618
- DOI: 10.1039/d2cb00105e
Rational design of a dual-reactive probe for imaging the biogenesis of both H2S and GSH from l-Cys rather than d-Cys in live cells
Abstract
Biothiols and their interconversion are involved in cellular redox homeostasis as well as many physiological processes. Here, a dual-reactive dual-quenching fluorescent probe was rationally developed based on thiolysis reactions of 7-nitrobenzoxadiazole (NBD) tertiary amine and 7-cyanobenzoxadiazole (CBD) arylether for imaging of the biothiol interconversion. We demonstrate that the NBD-CBD probe exhibits very weak background fluorescence due to the dual-quenching effects, and can be dual-activated by H2S and GSH with an over 500-fold fluorescence increase at 525 nm. In addition, the probe shows high sensitivity, excellent selectivity, and good biocompatibility, all of which promote the simultaneous detection of both H2S and GSH in live cells. Importantly, probe 1 was successfully employed to reveal the biogenesis of both H2S and GSH from l-Cys rather than from d-Cys, and therefore, d-Cys would be solely converted into H2S, which may help understand the more H2S generation from d-Cys than from l-Cys in live cells.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures







Similar articles
-
Dual-quenching NBD-based fluorescent probes for separate detection of H2S and Cys/Hcy in living cells.Org Biomol Chem. 2019 Sep 28;17(36):8435-8442. doi: 10.1039/c9ob01535c. Epub 2019 Aug 29. Org Biomol Chem. 2019. PMID: 31465085
-
A Facile Probe for Fluorescence Turn-on and Simultaneous Naked-Eyes Discrimination of H2S and biothiols (Cys and GSH) and Its Application.J Fluoresc. 2022 Jan;32(1):175-188. doi: 10.1007/s10895-021-02838-6. Epub 2021 Oct 23. J Fluoresc. 2022. PMID: 34687397
-
Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice.ACS Sens. 2022 Apr 22;7(4):1105-1112. doi: 10.1021/acssensors.2c00058. Epub 2022 Mar 31. ACS Sens. 2022. PMID: 35357825
-
Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H2S and biothiols: design and biological applications.Org Biomol Chem. 2017 May 10;15(18):3828-3839. doi: 10.1039/c7ob00332c. Org Biomol Chem. 2017. PMID: 28358164 Review.
-
NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications.Chem Soc Rev. 2021 Jul 5;50(13):7436-7495. doi: 10.1039/d0cs01096k. Chem Soc Rev. 2021. PMID: 34075930 Free PMC article. Review.
Cited by
-
Sulfide regulation and catabolism in health and disease.Signal Transduct Target Ther. 2025 May 30;10(1):174. doi: 10.1038/s41392-025-02231-w. Signal Transduct Target Ther. 2025. PMID: 40442106 Free PMC article. Review.
-
Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species.Chem Rev. 2024 Apr 10;124(7):4124-4257. doi: 10.1021/acs.chemrev.3c00683. Epub 2024 Mar 21. Chem Rev. 2024. PMID: 38512066 Free PMC article. Review.
References
-
- Yang G. Wu L. Jiang B. Yang W. Qi J. Cao K. Meng Q. Mustafa A. K. Mu W. Zhang S. Snyder S. H. Wang R. Science. 2008;332:587. doi: 10.1126/science.1162667. - DOI - PMC - PubMed
- Cao X. Ding L. Xie Z. Yang Y. Whiteman M. Moore P. K. Bian J.-S. Antioxid. Redox Signaling. 2019;31:1–38. doi: 10.1089/ars.2017.7058. - DOI - PMC - PubMed
- Filipovic M. R. Zivanovic J. Alvarez B. Banerjee R. Chem. Rev. 2018;118:1253–1337. doi: 10.1021/acs.chemrev.7b00205. - DOI - PMC - PubMed
- Trujillo M. Alvarez B. Radi R. Free Radical Res. 2016;50:150–171. doi: 10.3109/10715762.2015.1089988. - DOI - PubMed
- Rabe von Pappenheim F. Wensien M. Ye J. Uranga J. Irisarri I. de Vries J. Funk L.-M. Mata R. A. Tittmann K. Nat. Chem. Biol. 2022;18:368–375. doi: 10.1038/s41589-021-00966-5. - DOI - PMC - PubMed
- Bora P. Manna S. Nair M. A. Sathe R. R.-M. Singh S. Sreyas Adury V. S. Gupta K. Mukherjee A. Saini D. K. Kamat S. S. Hazra A. B. Chakrapani H. Chem. Sci. 2021;12:12939–12949. doi: 10.1039/D1SC03828A. - DOI - PMC - PubMed
- Levinn C. M. Cerda M. M. Pluth M. D. Acc. Chem. Res. 2019;52:2723–2731. doi: 10.1021/acs.accounts.9b00315. - DOI - PMC - PubMed
- Ni X. Kelly S. S. Xu S. Xian M. Acc. Chem. Res. 2021;54:3968–3978. doi: 10.1021/acs.accounts.1c00506. - DOI - PubMed
-
- Wang R. Physiol. Rev. 2012;92:791–896. doi: 10.1152/physrev.00017.2011. - DOI - PubMed
- Szabo C. Biochem. Pharmacol. 2018;149:5–19. doi: 10.1016/j.bcp.2017.09.010. - DOI - PMC - PubMed
- Liu Y. Lu M. Hu L. Wong P. T. Webb G. D. Bian J. Antioxid. Redox Signaling. 2012;17:141–185. doi: 10.1089/ars.2011.4005. - DOI - PubMed
- Modis K. Ju Y. Ahmad A. Untereiner A. A. Altaany Z. Wu L. Szabo C. Wang R. Pharmacol. Res. 2016;113:116–124. doi: 10.1016/j.phrs.2016.08.023. - DOI - PMC - PubMed
- Khodade V. S. Aggarwal S. C. Pharoah B. M. Paolocci N. Toscano J. P. Chem. Sci. 2021;12:8252–8259. doi: 10.1039/D1SC01550H. - DOI - PMC - PubMed
-
- Yang K. Cao F. Tao L. Zhu Y. Xue Y. Front. Physiol. 2022;13:840293. doi: 10.3389/fphys.2022.840293. - DOI - PMC - PubMed
- Liu T. Sun L. Zhang Y. Wang Y. Zheng J. J. Biochem. Mol. Toxicol. 2022;36:e22942. - PubMed
- Cairns R. A. Harris I. S. Mak T. W. Nat. Rev. Cancer. 2011;11:85–95. doi: 10.1038/nrc2981. - DOI - PubMed
- Hwang C. Sinskey A. J. Lodish H. F. Science. 1992;257:1496–1502. doi: 10.1126/science.1523409. - DOI - PubMed
-
- Kimura H. Amino Acids. 2011;41:113. doi: 10.1007/s00726-010-0510-x. - DOI - PubMed
- Shibuya N. Koike S. Tanaka M. Ishigami-Yuasa M. Kimura Y. Ogasawara Y. Fukui K. Nagahara N. Kimura H. Nat. Commun. 2013;4:1366. doi: 10.1038/ncomms2371. - DOI - PubMed
- Paul B. D. Sbodio J. I. Snyder S. H. Trends Pharmacol. Sci. 2018;39:513–524. doi: 10.1016/j.tips.2018.02.007. - DOI - PMC - PubMed
- Lu S. C. Biochim. Biophys. Acta, Gen. Subj. 2013;1830:3143–3153. doi: 10.1016/j.bbagen.2012.09.008. - DOI - PMC - PubMed
- Stipanuk M. H. Annu. Rev. Nutr. 2004;24:539–577. doi: 10.1146/annurev.nutr.24.012003.132418. - DOI - PubMed
-
- Szabo C. Nat. Rev. Drug Discovery. 2016;15:185–203. doi: 10.1038/nrd.2015.1. - DOI - PMC - PubMed
- Szabo C. Papapetropoulos A. Pharmacol. Rev. 2017;69:497–564. doi: 10.1124/pr.117.014050. - DOI - PMC - PubMed
- Dorszewska J. Prendecki M. Oczkowska A. Dezor M. Kozubski W. Curr. Alzheimer Res. 2016;13:952–963. doi: 10.2174/1567205013666160314150501. - DOI - PubMed
- Kennedy L. Sandhu J. K. Harper M. Cuperlovic-Culf M. Biomolecules. 2020;10:1429. doi: 10.3390/biom10101429. - DOI - PMC - PubMed
- Coletta C. Modis K. Szczesny B. Brunyanszki A. Olah G. Rios E. C.-S. Yanagi K. Ahmad A. Papapetropoulos A. Szabo C. Mol. Med. 2015;21:1–14. doi: 10.2119/molmed.2015.00035. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources