Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 22;41(1):229.
doi: 10.1186/s13046-022-02437-8.

PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming

Affiliations

PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming

Qianqian Chen et al. J Exp Clin Cancer Res. .

Abstract

Background: Airborne fine particulate matter (PM2.5) has been associated with lung cancer development and progression in never smokers. However, the molecular mechanisms underlying PM2.5-induced lung cancer remain largely unknown. The aim of this study was to explore the mechanisms by which PM2.5 regulated the carcinogenesis of non-small cell lung cancer (NSCLC).

Methods: Paralleled ribosome sequencing (Ribo-seq) and RNA sequencing (RNA-seq) were performed to identify PM2.5-associated genes for further study. Quantitative real time-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC) were used to determine mRNA and protein expression levels in tissues and cells. The biological roles of PM2.5 and PM2.5-dysregulated gene were assessed by gain- and loss-of-function experiments, biochemical analyses, and Seahorse XF glycolysis stress assays. Human tissue microarray analysis and 18F-FDG PET/CT scans in patients with NSCLC were used to verify the experimental findings. Polysome fractionation experiments, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assay were implemented to explore the molecular mechanisms.

Results: We found that PM2.5 induced a translation shift towards glycolysis pathway genes and increased glycolysis metabolism, as evidenced by increased L-lactate and pyruvate concentrations or higher extracellular acidification rate (ECAR) in vitro and in vivo. Particularly, PM2.5 enhanced the expression of glycolytic gene DLAT, which promoted glycolysis but suppressed acetyl-CoA production and enhanced the malignancy of NSCLC cells. Clinically, high expression of DLAT was positively associated with tumor size, poorer prognosis, and SUVmax values of 18F-FDG-PET/CT scans in patients with NSCLC. Mechanistically, PM2.5 activated eIF4E, consequently up-regulating the expression level of DLAT in polysomes. PM2.5 also stimulated transcription factor Sp1, which further augmented transcription activity of DLAT promoter.

Conclusions: This study demonstrated that PM2.5-activated overexpression of DLAT and enhancement in glycolysis metabolism contributed to the tumorigenesis of NSCLC, suggesting that DLAT-associated pathway may be a therapeutic target for NSCLC.

Keywords: DLAT; Glycolysis reprograming; Non-small cell lung cancer (NSCLC); PM2.5; Sp1; Transcription; Translation; eIF4E.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
PM2.5 induces a translation efficiency (TE) shift towards up-regulation of glycolysis pathway genes. A Overview of experiments for RNA-seq and Ribo-seq in BEAS-2B cells following PM2.5 exposure. B Volcano map of differentially expressed genes (DEGs)in RNA-seq. Red and blue dots represent the upregulated and downregulated genes, respectively (FDR<0.05; |Log2(fold change)| >1). C Volcano plot of DEGs in Ribo-seq. D Volcano plot showing genes with significant changes in TE. E Genome-wide transcriptional and translational regulations showed very little correlation. F The four-way Venn diagram represented the different subsets of genes that are significantly upregulated or down-regulated at the TE and transcription levels. G KEGG pathway analysis of DEGs in transcriptome (RNA-seq). H Pathway analyses on DEGs in translatome revealed a shift towards glycolysis-related pathways. I Glycolysis/gluconeogenesis pathway was the only significantly enriched pathway in genes with TE changes. J Heatmap of DEGs in TE in the “Glycolysis/gluconeogenesis pathway”. K Fold change of TE for glycolytic genes between PM2.5-exposed cells and control cells. L Gene set enrichment analysis (GSEA) of Ribo-seq data showing the enrichment of glycolysis/gluconeogenesis pathway (upper) and the gene signature (lower) in PM2.5-exposed cells, with DLAT as the top up-regulated gene. M GSEA of Ribo-seq data revealing the enrichment of pyruvate metabolism pathway (upper) and the gene set in PM2.5-exposed cells, with DLAT ranking as the top gene. NES, normalized enrichment score
Fig. 2
Fig. 2
PM2.5 enhances glycolysis metabolism in vitro and in vivo. A PM2.5 enhanced L-lactate production in BEAS-2B cells, while 2-DG pretreatment reduced the generation of lactate in PM2.5-treated cells. B PM2.5 augmented L-lactate release from A549 cells in a dose response manner. C PM2.5 enhanced L-lactate production in PC9 cells. D PM2.5 increased pyruvate generation in BEAS-2B cells, and 2-DG pretreatment decreased pyruvate production in PM2.5-treated cells. E PM2.5 up-regulated pyruvate levels in A549 cells. F PM2.5 increased pyruvate levels in PC9 cells. G PM2.5 promoted ECAR levels in BEAS-2B cells. H PM2.5 exposure enhanced the production of L-lactate in lung issues of rats. I PM2.5 exposure promoted the generation of pyruvate in lung issues of rats. *P < 0.05, **P < 0.01, ***P < 0.001
Fig. 3
Fig. 3
PM2.5 increases the expression of glycolytic gene DALT in vitro and in vivo. A PM2.5 exposure enhanced the expression level of DLAT gene in BEAS-2B cells. B PM2.5 inhalation up-regulated DLAT gene expression in lung tissues of rats. C PM2.5 exposure promoted DLAT protein expression in BEAS-2B cells. Numerical numbers denoted the ratio of integrated optical density (IOD) to β-actin. D PM2.5 exposure increased DLAT protein expression in lungs of rats. *P < 0.05, **P < 0.01
Fig. 4
Fig. 4
DLAT enhances glycolysis metabolism in NSCLC cells. A DLAT overexpression increased L-lactate production in PC9 cells. B DLAT up-regulation enhanced L-lactate production in A549 cells. C DLAT overexpression increased pyruvate release from PC9 cells. D Up-regulation of DLAT promoted pyruvate release from A549 cells. E Knockdown of DLAT suppressed L-lactate generation from PC9 cells. F Down-regulation of DLAT inhibited L-lactate generation from A549 cells. G Inhibition of DLAT expression decreased pyruvate production in PC9 cells. H Decreased DLAT expression reduced pyruvate production in A549 cells. I Overexpression of DLAT enhanced ECAR levels in PC9 cells. J Up-regulation of DLAT increased ECAR levels in A549 cells. *P < 0.05, **P < 0.01
Fig. 5
Fig. 5
DLAT promotes the malignancy of NSCLC cells and correlates with glucose metabolism and poor prognosis in NSCLC patients. A, B Overexpression of DLAT promoted cell proliferation of NSCLC cells. C, D Knockdown of DLAT suppressed cell proliferation of A549 and PC9 cells. E, F Up-regulation of DLAT reduced apoptosis rate of PC9 and A549 cells. G, H Depletion of DLAT increased apoptosis rate of NSCLC cells. I Representative 18F-FDG PET/CT images in patients with NSCLC tumors exhibiting low or high expression of DLAT. J The expression levels (% of positive cells) of DLAT in tumor tissues were positively correlated with the SUVmax values in patients with NSCLC. K Analysis of SUVmax in the DLAT low and DLAT high groups. L DLAT expression levels in NSCLC tumor tissues increased as NSCLC progressed to more advanced stages. M Representative pictures showing that IHC signals of DLAT (brown staining) was increased along with the tumor stages of NSCLC. N Kaplan-Meier analysis showed that elevated expression of DLAT was associated with poorer overall survival (OS) in NSCLC patients. Data shown are mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
Fig. 6
Fig. 6
PM2.5 activates the expression of eIF4E that subsequently increases the translation of DLAT in polysomes. A PM2.5 enhanced eIF4E gene expression in BEAS-2B cells in a dose-response manner. B PM2.5 increased eIF4E gene expression in lung tissues of rats. C PM2.5 up-regulated eIF4E protein expression in BEAS-2B cells. D PM2.5 increased eIF4E protein expression in lung tissues of rats. E Up-regulation of eIF4E increased the expression of DLAT protein and knockdown of eIF4E decreased DLAT protein expression. F The expression level of eIF4E was positively correlated with that of DLAT in LUAD tumor tissues (TCGA datasets). G Correlation between eIF4E and DLAT expression levels in LUSC (TCGA datasets). H Overexpression of eIF4E increased the polysome to monosome (P/M) ratio of DLAT mRNA expression, suggesting an increase of DLAT translation initiation. I Up-regulation of eIF4E increased the abundance of DLAT mRNA in polysome but reduced DLAT expression in monosome in A549 cells. J Knockdown of eIF4E decreased the polysome to monosome ratio of DLAT mRNA expression, indicating a reduction of DLAT translation initiation. K Downregulation of eIF4E decreased the abundance of DLAT mRNA in polysome but enhanced DLAT expression in monosome in A549 cells. *P<0.05, **P<0.01
Fig. 7
Fig. 7
PM2.5 activates the expression of transcription factor Sp1 which enhances the transcription of DLAT. A PM2.5 promoted Sp1 expression in a dose-response manner in BEAS-2B cells. B PM2.5 enhanced the expression of Sp1 in lung tissues of rats. C PM2.5 increased the expression of Sp1 protein in lung tissues of rats. D, E The expression level of Sp1 was positively correlated with that of DLAT in LUAD (lung adenocarcinoma) and LUSC (lung squamous carcinoma) in TCGA dataset. F In silico analysis identified Sp1 putative binding sites in the promoter region of DLAT. G ChIP assay showed the binding of Sp1 with DLAT promoter region. H Potential binding sequences for Sp1 were found in the DLAT promoter region. I Luciferase reporter assay verified that the binding of Sp1 with wild-type DLAT promoter significantly increased the luciferase activity. While binding of Sp1 with mutant DLAT promoter did not changes the intensity of luciferase signals. J Schematic view for the mechanisms of action of DLAT-mediated glycolysis reprograming in PM2.5-induced carcinogenesis. *P<0.05, **P<0.01, ***P<0.001.
Fig. 8
Fig. 8
Schematic view for the mechanisms of action of DLAT-mediated glycolysis reprograming in PM2.5-induced carcinogenesis

References

    1. Kang HR, Cho JY, Lee SH, Lee YJ, Park JS, Cho YJ, Yoon HI, Lee KW, Lee JH, Lee CT. Role of low-dose computerized tomography in lung cancer screening among never-smokers. J Thorac Oncol. 2019;14(3):436–444. doi: 10.1016/j.jtho.2018.11.002. - DOI - PubMed
    1. Casal-Mouriño A, Valdés L, Barros-Dios JM, Ruano-Ravina A. Lung cancer survival among never smokers. Cancer Lett. 2019;451:142–149. doi: 10.1016/j.canlet.2019.02.047. - DOI - PubMed
    1. Smolle E, Pichler M. Non-smoking-associated lung cancer: a distinct entity in terms of tumor biology, patient characteristics and impact of hereditary cancer predisposition. Cancers (Basel) 2019;11(2):204. doi: 10.3390/cancers11020204. - DOI - PMC - PubMed
    1. Lee YJ, Kim JH, Kim SK, Ha SJ, Mok TS, Mitsudomi T, Cho BC. Lung cancer in never smokers: change of a mindset in the molecular era. Lung Cancer. 2011;72(1):9–15. doi: 10.1016/j.lungcan.2010.12.013. - DOI - PubMed
    1. Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer. 2013;13(9):674–678. doi: 10.1038/nrc3572. - DOI - PubMed

MeSH terms