Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 25:849:157398.
doi: 10.1016/j.scitotenv.2022.157398. Epub 2022 Jul 21.

Groundwater travel times predict DOC in streams and riparian soils across a heterogeneous boreal landscape

Affiliations
Free article

Groundwater travel times predict DOC in streams and riparian soils across a heterogeneous boreal landscape

Elin Jutebring Sterte et al. Sci Total Environ. .
Free article

Abstract

Dissolved organic carbon (DOC) in surface waters is an important component of the boreal landscape carbon budget and a critical variable in water quality. A dominant terrestrial DOC source in the boreal landscape is the riparian zone. These near stream areas play a key role in regulating DOC transport between land and aquatic ecosystems. The groundwater dynamics at this interface have been considered a major controlling variable for DOC export to streams. This study focuses on the regulating role of groundwater levels and mean travel times (MTT) on riparian DOC concentrations and, subsequently, stream DOC. This is done by comparing them as explanatory variables to capture the spatial and intra-annual variability of the stream and riparian groundwater DOC. We used a physically based 3D hydrological model, Mike SHE, to simulate DOC concentrations of the riparian zones for 14 sub-catchments within the Krycklan catchment (Sweden). The model concept assumes that DOC concentrations will be higher in groundwater moving through shallow flow paths. In the model, this can be linked to the position of the groundwater table at a point of observation or the travel time, which will generally be shorter for water that has travelled through shallow and more conductive soil layers. We compared the results with both observed stream and groundwater concentrations. The analysis revealed that the correlation between modelled and observed annual averages of stream DOC increased from r = 0.08 to r = 0.87 by using MTT instead of groundwater level. MTT also better captured the observed spatial variability in riparian DOC concentrations and more successfully represented seasonal variability of stream DOC. We, therefore, suggest that MTT is a better predictor than groundwater level for riparian DOC concentration because it can capture a greater variety of catchment heterogeneities, such as variation in soil properties, catchment size, and input from deep groundwater sources.

Keywords: Concentration; Dissolved organic carbon; Groundwater level; Hydrologic transport; MTT; Modelling.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

Similar articles

LinkOut - more resources