Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 8:99:153848.
doi: 10.1016/j.tetlet.2022.153848. Epub 2022 May 6.

Canavanine versus arginine: Prospects for cell-penetrating peptides

Affiliations

Canavanine versus arginine: Prospects for cell-penetrating peptides

Lindsey O Calabretta et al. Tetrahedron Lett. .

Abstract

Octanol-water partitioning experiments in the presence of carboxylate-, phosphate-, and sulfate-containing anionic lipids revealed that Ac-Cav-NH2 (where Cav refers to δ-oxa-arginine) partitions less into octanol than does Ac-Arg-NH2, suggesting that a cell-penetrating peptide based on canavanine would be relatively ineffective.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Graph showing the octanol–water partitioning of 1·HCl and 2·HCl in the presence of anionic lipids 6, 7, or 8 (2.5 equiv) at pH 7.4 (unless indicated otherwise). Values were determined by 1H-NMR spectroscopy in duplicate experiments (Figures S2–S4).
Scheme 1.
Scheme 1.
Structures of Ac-Arg-NH2·HCl (1·HCl) and Ac-Cav-NH2·HCl (2·HCl).
Scheme 2.
Scheme 2.
Synthetic route to Ac-Cav-NH2·HCl (2·HCl).

Similar articles

Cited by

References

    1. For reviews, see: Schwarze SR, Hruska KA, Dowdy SF, Trends Cell Biol, 2000, 10, 290–295. - PubMed
    2. Fuchs SM, Raines RT, Cell. Mol. Life Sci, 2006, 63, 1819–1822. - PMC - PubMed
    3. Heitz F, Morris MC, Divita G, Br. J. Pharmacol, 2009, 157, 195–206. - PMC - PubMed
    4. Copolovici DM, Langel K, Eriste E, Langel Ü, ACS Nano, 2014, 8, 1972–1994. - PubMed
    5. Dupont E, Prochiantz A, Joliot A, Methods Mol. Biol., 2015, 1324, 29–37. - PubMed
    6. Takeuchi T, Futaki S, Chem. Pharm. Bull. (Tokyo), 2016, 64, 1431–1437. - PubMed
    7. Zhu P, Jin L, Curr Protein Pept. Sci, 2018, 19, 211–220. - PubMed
    8. Derakhshankhah H, Jafari S, Biomed. Pharmacother, 2018, 108, 1090–1096. - PubMed
    9. Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z, Front. Pharmacol, 2020, 11, 697. - PMC - PubMed
    1. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB, Proc. Natl. Acad. Sci. USA, 2000, 97, 13003–13008. - PMC - PubMed
    2. Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA, J. Am. Chem. Soc, 2004, 126, 9506–9507. - PubMed
    1. For examples, see: Umezawa N, Gelman MA, Haigis MC, Raines RT, Gellman SH, J. Am. Chem. Soc, 2002, 124, 368–369. - PubMed
    2. Okuyama M, Laman HH, Kingsbury SR, Visintin C, Leo E, Eward KL, Stoeber K, Boshoff C, Williams GH, Selwood DL, Nat. Methods, 2007, 4, 153–159. - PubMed
    3. Nischan N, Herce HD, Natale F, Bohlke N, Budisa N, Cardoso MC, Hackenberger CP, Angew. Chem., Int. Ed, 2015, 54, 1950–1953. - PubMed
    4. Nagel YA, Raschle PS, Wennemers H, Angew. Chem., Int. Ed, 2017, 56, 122–126. - PubMed
    5. Kalafatovic D, Giralt E, Molecules, 2017, 22, 1929. - PMC - PubMed
    1. Li M, Mosel S, Knauer SK, Schmuck C, Org. Biomol. Chem, 2018, 16, 2312–2317. - PubMed
    1. Schmuck C, Chem.—Eur. J., 2000, 6, 709–718. - PubMed

LinkOut - more resources