Transient directing group enabled Pd-catalyzed C-H oxygenation of benzaldehydes and benzylic amines
- PMID: 35873337
- PMCID: PMC9235058
- DOI: 10.1039/d2ra00241h
Transient directing group enabled Pd-catalyzed C-H oxygenation of benzaldehydes and benzylic amines
Abstract
We report a general protocol for ortho-C-H fluoroalkoxylation of benzaldehydes and benzylic amines utilizing an inexpensive amino amide as a transient directing group. In the presence of an electrophilic fluorinating bystanding oxidant and fluorinated alcohols, a wide range of benzaldehydes and benzylic amines could be oxygenated selectively at the ortho positions to afford fluoroalkyl aryl ethers. This elegant approach would provide appealing strategies for synthesis of drug molecules and natural products.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures




Similar articles
-
Transient Directing Group Enabled Pd-catalyzed γ-C(sp3)-H Oxygenation of Alkyl Amines.ACS Catal. 2020 May 15;10(10):5657-5662. doi: 10.1021/acscatal.0c01310. Epub 2020 Apr 24. ACS Catal. 2020. PMID: 33996194 Free PMC article.
-
Pd-Catalyzed, ortho C-H Methylation and Fluorination of Benzaldehydes Using Orthanilic Acids as Transient Directing Groups.J Am Chem Soc. 2018 Feb 28;140(8):2789-2792. doi: 10.1021/jacs.8b00048. Epub 2018 Feb 9. J Am Chem Soc. 2018. PMID: 29412651
-
Pd-Catalyzed Ortho C-H Hydroxylation of Benzaldehydes Using a Transient Directing Group.Org Lett. 2017 Dec 1;19(23):6280-6283. doi: 10.1021/acs.orglett.7b02906. Epub 2017 Nov 11. Org Lett. 2017. PMID: 29129077
-
Monodentate Transient Directing Group Enabled Pd-Catalyzed Ortho-C-H Methoxylation and Chlorination of Benzaldehydes.Org Lett. 2019 May 17;21(10):3692-3695. doi: 10.1021/acs.orglett.9b01158. Epub 2019 May 8. Org Lett. 2019. PMID: 31066562
-
Amine-Catalyzed Copper-Mediated C-H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group.Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202202933. doi: 10.1002/anie.202202933. Epub 2022 May 5. Angew Chem Int Ed Engl. 2022. PMID: 35441781 Free PMC article.
Cited by
-
Transition-metal-catalyzed C-H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview.Beilstein J Org Chem. 2023 Apr 17;19:448-473. doi: 10.3762/bjoc.19.35. eCollection 2023. Beilstein J Org Chem. 2023. PMID: 37123090 Free PMC article. Review.
References
-
-
For examples on functionalization of C-H bond:
- Whisler M. C. MacNeil S. Snieckus V. Beak P. Angew. Chem., Int. Ed. 2004;43:2206–2225. doi: 10.1002/anie.200300590. - DOI - PubMed
- Daugulis O. Do H. Q. Shabashov D. Acc. Chem. Res. 2009;42:1074–1086. doi: 10.1021/ar9000058. - DOI - PMC - PubMed
- Engle K. M. Mei T. S. Wasa M. Yu J. Q. Acc. Chem. Res. 2012;45:788–802. doi: 10.1021/ar200185g. - DOI - PMC - PubMed
- Chen X. Engle K. Wang D. Yu J. Angew. Chem., Int. Ed. 2009;48:5094–5115. doi: 10.1002/anie.200806273. - DOI - PMC - PubMed
- Colby D. Bergman R. Ellman J. Chem. Rev. 2010;110:624–655. doi: 10.1021/cr900005n. - DOI - PMC - PubMed
- Lyons T. Sanford M. Chem. Rev. 2010;110:1147–1169. doi: 10.1021/cr900184e. - DOI - PMC - PubMed
- Rouquet G. Chatani N. Angew. Chem., Int. Ed. 2013;52:11726–11743. doi: 10.1002/anie.201301451. - DOI - PubMed
- Zhang F. L. Hong K. Li T. J. Park H. Yu J. Q. Science. 2016;351:252. doi: 10.1126/science.aad7893. - DOI - PMC - PubMed
- Tiwari V. K. Kapur M. Org. Biomol. Chem. 2019;17:1007–1026. doi: 10.1039/C8OB02272K. - DOI - PubMed
- Bisht R. Chattopadhyay B. J. Am. Chem. Soc. 2016;138:84–87. doi: 10.1021/jacs.5b11683. - DOI - PubMed
- He J. Wasa M. Chan K. S. L. Shao Q. Yu J. Q. Chem. Rev. 2017;117:8754. doi: 10.1021/acs.chemrev.6b00622. - DOI - PMC - PubMed
- Chen Y.-Q. Singh S. Wu Y. Wang Z. Hao W. Verma P. Qiao J. X. Sunoj R. B. Yu J. Q. J. Am. Chem. Soc. 2020;142:9966. doi: 10.1021/jacs.9b13537. - DOI - PMC - PubMed
- Xiao L. J. Hong K. Luo F. Hu L. Ewing W. R. Yeung K. S. Yu J. Q. Angew. Chem., Int. Ed. 2020;59:9594. doi: 10.1002/anie.202000532. - DOI - PMC - PubMed
- Provencher P. A. Hoskin J. F. Wong J. J. Chen X. Yu J. Q. Houk K. N. Sorensen E. J. J. Am. Chem. Soc. 2021;143:20035. doi: 10.1021/jacs.1c09368. - DOI - PubMed
- Provencher P. A. Bay K. L. Hoskin J. F. Houk K. N. Yu J. Q. Sorensen E. J. ACS Catal. 2021;11:3115. doi: 10.1021/acscatal.0c05081. - DOI - PubMed
- Li Y.-H. Ouyang Y. Chekshin N. Yu J. Q. J. Am. Chem. Soc. 2022;144:4727. doi: 10.1021/jacs.1c13586. - DOI - PMC - PubMed
- Higham I. Bull J. A. Angew. Chem., Int. Ed. 2022:e202202933. - PMC - PubMed
- Cheng J.-T. Xiao L.-J. Qian S.-Q. Zhuang Z. Liu A. Yu J.-Q. Angew. Chem., Int. Ed. 2022;61:e202117233. - PMC - PubMed
-
-
-
For examples on directing groups:
- Zaitsev V. G. Shabashov D. Daugulis O. J. Am. Chem. Soc. 2005;127:13154–13155. doi: 10.1021/ja054549f. - DOI - PubMed
- Desai L. V. Malik H. A. Sanford M. S. Org. Lett. 2006;8:1141–1144. doi: 10.1021/ol0530272. - DOI - PubMed
- Cabrera P. J. Lee M. Sanford M. S. J. Am. Chem. Soc. 2018;140:5599–5606. doi: 10.1021/jacs.8b02142. - DOI - PMC - PubMed
- Deprez N. R. Sanford M. S. J. Am. Chem. Soc. 2009;131:11234–11241. doi: 10.1021/ja904116k. - DOI - PMC - PubMed
- Neufeldt S. R. Sanford M. S. Acc. Chem. Res. 2012;45:936–946. doi: 10.1021/ar300014f. - DOI - PMC - PubMed
- Xu Y. Young M. C. Wang C. Magness D. M. Dong G. Angew. Chem., Int. Ed. 2016;55:9084–9087. doi: 10.1002/anie.201604268. - DOI - PubMed
- Wang J. Li R. Dong Z. Liu P. Dong G. Nat. Chem. 2018;10:866–872. doi: 10.1038/s41557-018-0074-z. - DOI - PubMed
-
. For selected reviews on transient directing groups:
- Goswami N. Bhattacharya T. Maiti D. Nat. Rev. Chem. 2021;5:646–659. doi: 10.1038/s41570-021-00311-3. - DOI - PubMed
- Jacob C. Maes B. U. W. Evano G. Chem. - Eur. J. 2021;27:13899–13952. doi: 10.1002/chem.202101598. - DOI - PubMed
- Zu B. Guo Y. Ke J. He C. Synthesis. 2021;53:2029–2042. doi: 10.1055/a-1372-6627. - DOI
- Lapuh M. I. Mazeh S. Besset T. ACS Catal. 2020;10:12898–12919. doi: 10.1021/acscatal.0c03317. - DOI
- Das J. Guin S. Maiti D. Chem. Sci. 2020;11:10887–10909. doi: 10.1039/D0SC04676K. - DOI - PMC - PubMed
- Higham J. I. Bull J. A. Org. Biomol. Chem. 2020;18:7291–7315. doi: 10.1039/D0OB01587C. - DOI - PubMed
- Bag D. Verma P. K. Sawant S. D. Chem.–Asian J. 2020;15:3225–3238. doi: 10.1002/asia.202000657. - DOI - PubMed
- Liao G. Zhang T. Lin Z. K. Shi B.-F. Angew. Chem., Int. Ed. 2020;59:19773–19786. doi: 10.1002/anie.202008437. - DOI - PubMed
- Niu B. Yang K. Lawrence B. Ge H. ChemSusChem. 2019;12:2955–2969. doi: 10.1002/cssc.201900151. - DOI - PubMed
- Rasheed O. K. Sun B. ChemistrySelect. 2018;3:5689–5708. doi: 10.1002/slct.201801097. - DOI
- St John-Campbell S. Bull J. Org. Biomol. Chem. 2018;16:4582–4595. doi: 10.1039/C8OB00926K. - DOI - PubMed
- Gandeepan P. Ackermann L. Chem. 2018;4:199–222. doi: 10.1016/j.chempr.2017.11.002. - DOI
- Qun Z. Thomas P. Xavier P. Tatiana B. Synthesis. 2017;49:4808–4826. doi: 10.1055/s-0036-1590878. - DOI
-
-
-
For examples on TDG enabled C(sp2)–H (hetero)arylations:
- Liu X.-H. Park H. Hu J.-H. Hu Y. Zhang Q.-L. Wang B.-L. Sun B. Yeung K.-S. Zhang F.-L. Yu J.-Q. J. Am. Chem. Soc. 2017;139:888–896. doi: 10.1021/jacs.6b11188. - DOI - PubMed
- Xu J. Wang Y. Li Y. Xu X. Jin Z. Org. Lett. 2017;19:1562–1565. doi: 10.1021/acs.orglett.7b00363. - DOI - PubMed
- Thrimurtulu N. Dey A. Singh A. Pal K. Maiti D. Volla C. M. R. Adv. Synth. Catal. 2019;361:1441–1446. doi: 10.1002/adsc.201801378. - DOI
- Wang J. Dong C. Wu L. Xu M. Lin J. Wei K. Adv. Synth. Catal. 2018;360:3709–3715. doi: 10.1002/adsc.201800489. - DOI
- Cheng Y. Zheng J. Tian C. He Y. Zhang C. Tan Q. An G. Li G. Asian J. Org. Chem. 2019;8:526–531. doi: 10.1002/ajoc.201900037. - DOI
- Xu J. Liu Y. Zhang J. Xu X. Jin Z. Chem. Commun. 2018;54:689–692. doi: 10.1039/C7CC09273C. - DOI - PubMed
- Liao G. Chen H.-M. Xia Y.-N. Li B. Yao Q.-J. Shi B.-F. Angew. Chem., Int. Ed. 2019;58:11464–11468. doi: 10.1002/anie.201906700. - DOI - PubMed
- St John-Campbell S. Ou A. Bull J. Chem. 2018;24:17838–17843. doi: 10.1002/chem.201804515. - DOI - PMC - PubMed
- Li B. Seth K. Niu B. Pan L. Yang H. Ge H. Angew. Chem., Int. Ed. 2018;57:3401–3405. doi: 10.1002/anie.201713357. - DOI - PubMed
- Wang D.-Y. Guo S.-H. Pan G.-F. Zhu X.-Q. Gao Y.-R. Wang Y.-Q. Org. Lett. 2018;20:1794–1797. doi: 10.1021/acs.orglett.8b00292. - DOI - PubMed
- Wu L.-F. Yao J.-W. Zhang X. Liu S.-Y. Zhuang Z.-N. Wei K. Org. Lett. 2021;23:6237–6241. doi: 10.1021/acs.orglett.1c01933. - DOI - PubMed
-
-
-
For examples on TDG enabled C(sp2)–H alkylations:
- Chen X.-Y. Sorensen E. J. J. Am. Chem. Soc. 2018;140:2789–2792. doi: 10.1021/jacs.8b00048. - DOI - PubMed
- Liao G. Li B. Chen H.-M. Yao Q.-J. Xia Y.-N. Luo J. Shi B.-F. Angew. Chem., Int. Ed. 2018;57:17151–17155. doi: 10.1002/anie.201811256. - DOI - PubMed
- Chen H.-M. Zhang S. Liao G. Yao Q.-J. Xu X.-T. Zhang K. Shi B.-F. Organometallics. 2019;38:4022–4028. doi: 10.1021/acs.organomet.9b00490. - DOI
- Tan P. W. Juwaini N. A. B. Seayad J. Org. Lett. 2013;15:5166–5169. doi: 10.1021/ol402145m. - DOI - PubMed
- Li G. Jijun J. Xie H. Wang J. Chem. - Eur. J. 2019;25:4688–4694. doi: 10.1002/chem.201900762. - DOI - PubMed
- Chen H.-M. Liao G. Xu C.-K. Yao Q.-J. Zhang S. Shi B.-F. CCS Chem. 2021;3:455–465. doi: 10.31635/ccschem.021.202000695. - DOI
-
-
-
For examples on TDG enabled C(sp2)–H alkenylation:
- Engle K. M. Yu J.-Q. J. Org. Chem. 2013;78:8927–8955. doi: 10.1021/jo400159y. - DOI - PMC - PubMed
- Shao Q. Wu K. Zhuang Z. Qian S. Yu J.-Q. Acc. Chem. Res. 2020;53:833–851. doi: 10.1021/acs.accounts.9b00621. - DOI - PMC - PubMed
- Bag S. Jana S. Pradhan S. Bhowmick S. Goswami N. Sinha S. K. Maiti D. Nat. Commun. 2021;12:1393. doi: 10.1038/s41467-021-21633-2. - DOI - PMC - PubMed
- Yao Q.-J. Zhang S. Zhan B.-B. Shi B.-F. Angew. Chem., Int. Ed. 2017;56:6617–6621. doi: 10.1002/anie.201701849. - DOI - PubMed
- Dhawa U. Tian C. Wdowik T. Oliveira J. C. A. Hao J. Ackermann L. Angew. Chem., Int. Ed. 2020;59:13451–13457. doi: 10.1002/anie.202003826. - DOI - PMC - PubMed
-
LinkOut - more resources
Full Text Sources