Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 8;9(7):343.
doi: 10.3390/vetsci9070343.

Spotted Fever Group Rickettsia spp. Diversity in Ticks and the First Report of Rickettsia hoogstraalii in Romania

Affiliations

Spotted Fever Group Rickettsia spp. Diversity in Ticks and the First Report of Rickettsia hoogstraalii in Romania

Talida Ivan et al. Vet Sci. .

Abstract

Tickborne bacterial pathogens have been described worldwide as risk factors for both animal and human health. Spotted fevers caused by Rickettsiae may cause non-specific symptoms, which make clinical diagnosis difficult. The aim of the current study was to evaluate and review the diversity of SFG Rickettsiae in ticks collected in 41 counties in Romania. A total of 2028 questing and engorged ticks collected in Romania belonging to five species were tested by PCR amplification of Rickettsia spp. gltA and 17-D gene fragments: Ixodes ricinus (n = 1128), Dermacentor marginatus (n = 507), D. reticulatus (n = 165), Rhipicephalus rossicus (n = 128) and Haemaphysalis punctata (n = 100). Five Rickettsia species were identified following DNA sequence analysis: R. helvetica, R. monacensis, R. slovaca, R. raoultii, and R. hoogstraalii. The most common species detected was R. monacensis. Moreover, R. hoogstraalii was detected for the first time in Romania and in R. rossicus ticks. The detection of R. raoultii and R. monacensis in questing larvae of Hae. punctata suggests the possible transovarial transmission of these Rickettsia species in ticks. The detection of R. hoogstraalii for the first time in Romania increases the reported SFG Rickettsia diversity in the country.

Keywords: Rickettsia hoogstraalii; Romania; SFG Rickettsia spp. diversity; ticks.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The prevalence, diversity, and geographic distribution of Rickettsia spp. in ticks in Romania.

Similar articles

Cited by

References

    1. Ginsberg H.S., Faulde M.K. Ticks. World Health Organization, Regional Office for Europe; Copenhagen, Denmark: 2008. pp. 303–345.
    1. Dantas-Torres F., Chomel B.B., Otranto D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012;28:437–446. doi: 10.1016/j.pt.2012.07.003. - DOI - PubMed
    1. Tagliapietra V., Rosà R., Arnoldi D., Cagnacci F., Capelli G., Montarsi F., Hauffe H.C., Rizzoli A. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 2011;183:114–124. doi: 10.1016/j.vetpar.2011.07.022. - DOI - PubMed
    1. Hofmeester T.R., Sprong H., Jansen P.A., Prins H.H., Van Wieren S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasites Vectors. 2017;10:433. doi: 10.1186/s13071-017-2370-7. - DOI - PMC - PubMed
    1. Ogden N.H., Lindsay L.R. Effects of climate and climate change on vectors and vector-borne diseases: Ticks are different. Trends Parasitol. 2016;32:646–656. doi: 10.1016/j.pt.2016.04.015. - DOI - PubMed

LinkOut - more resources