Computational models for generating microvascular structures: Investigations beyond medical imaging resolution
- PMID: 35880683
- PMCID: PMC10077909
- DOI: 10.1002/wsbm.1579
Computational models for generating microvascular structures: Investigations beyond medical imaging resolution
Abstract
Angiogenesis, arteriogenesis, and pruning are revascularization processes essential to our natural vascular development and adaptation, as well as central players in the onset and development of pathologies such as tumoral growth and stroke recovery. Computational modeling allows for repeatable experimentation and exploration of these complex biological processes. In this review, we provide an introduction to the biological understanding of the vascular adaptation processes of sprouting angiogenesis, intussusceptive angiogenesis, anastomosis, pruning, and arteriogenesis, discussing some of the more significant contributions made to the computational modeling of these processes. Each computational model represents a theoretical framework for how biology functions, and with rises in computing power and study of the problem these frameworks become more accurate and complete. We highlight physiological, pathological, and technological applications that can be benefit from the advances performed by these models, and we also identify which elements of the biology are underexplored in the current state-of-the-art computational models. This article is categorized under: Cancer > Computational Models Cardiovascular Diseases > Computational Models.
Keywords: angiogenesis; arteriogenesis; cancer; computational model; pruning.
© 2022 The Authors. WIREs Mechanisms of Disease published by Wiley Periodicals LLC.
Conflict of interest statement
The authors declare no conflict of interest.
Figures


Similar articles
-
Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth.WIREs Mech Dis. 2024 Mar-Apr;16(2):e1634. doi: 10.1002/wsbm.1634. Epub 2023 Dec 12. WIREs Mech Dis. 2024. PMID: 38084799 Review.
-
Computational model of flow-tissue interactions in intussusceptive angiogenesis.J Theor Biol. 2005 May 7;234(1):87-97. doi: 10.1016/j.jtbi.2004.11.014. Epub 2004 Dec 30. J Theor Biol. 2005. PMID: 15721038
-
Intussusceptive angiogenesis: a biologically relevant form of angiogenesis.J Vasc Res. 2012;49(5):390-404. doi: 10.1159/000338278. Epub 2012 Jun 26. J Vasc Res. 2012. PMID: 22739226 Review.
-
Angiogenesis: an adaptive dynamic biological patterning problem.PLoS Comput Biol. 2013;9(3):e1002983. doi: 10.1371/journal.pcbi.1002983. Epub 2013 Mar 21. PLoS Comput Biol. 2013. PMID: 23555218 Free PMC article.
-
Intussusceptive angiogenesis: expansion and remodeling of microvascular networks.Angiogenesis. 2014 Jul;17(3):499-509. doi: 10.1007/s10456-014-9428-3. Epub 2014 Mar 26. Angiogenesis. 2014. PMID: 24668225 Free PMC article. Review.
Cited by
-
Bridging Scales: a Hybrid Model to Simulate Vascular Tumor Growth and Treatment Response.ArXiv [Preprint]. 2023 Jun 9:arXiv:2306.05994v1. ArXiv. 2023. PMID: 37332572 Free PMC article. Preprint.
-
Prostate Cancer Microvascular Routes: Exploration and Measurement Strategies.Life (Basel). 2023 Oct 9;13(10):2034. doi: 10.3390/life13102034. Life (Basel). 2023. PMID: 37895416 Free PMC article. Review.
References
-
- Anderson, A. R. , & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumor‐induced angiogenesis. Bulletin of Mathematical Biology, 60, 857–899. - PubMed
-
- Ando, J. , & Yamamoto, K. (2009). Vascular mechanobiology endothelial cell responses to fluid shear stress. Circulation Journal, 73, 1983–1992. - PubMed
-
- Armulik, A. , Genové, G. , & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215. - PubMed
-
- Baffert, F. , Le, T. , Sennino, B. , Thurston, G. , Kuo, C. J. , Hu‐Lowe, D. , & McDonald, D. M. (2006). Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. American Journal of Physiology. Heart and Circulatory Physiology, 290, H547–H559. - PubMed
-
- Baker, M. , Robinson, S. D. , Lechertier, T. , Barber, P. R. , Tavora, B. , D'amico, G. , Jones, D. T. , Vojnovic, B. , & Hodivala‐Dilke, K. (2012). Use of the mouse aortic ring assay to study angiogenesis. Nature Protocols, 7, 89–104. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical