Circulating short-chain fatty acids in hypertension: a reflection of various hypertensive phenotypes
- PMID: 35881452
- DOI: 10.1097/HJH.0000000000003190
Circulating short-chain fatty acids in hypertension: a reflection of various hypertensive phenotypes
Abstract
Background: Hypertension is the most common chronic condition globally, contributing to an increased risk of cardiovascular disease and premature death. Despite advances in treatment options, approximately 10% of patients have resistant hypertension, characterized by elevated blood pressure that does not respond to treatment. The gut microbiome is now increasingly recognized to play a role in the development and pathogenesis of several diseases, including hypertension, although the exact mechanisms remain unclear.
Method: The aim of the present study was to investigate circulating levels of short-chain fatty acids, metabolites produced by gut bacteria, in essential ( n = 168) and resistant hypertensive ( n = 27) patients, compared with healthy controls ( n = 38).
Results: Serum acetate was significantly lower in the resistant hypertensive population, compared with both the normotensive controls and those with essential hypertension (748 ± 89 versus 1335 ± 61 and 1171 ± 22 nmol/ml, P < 0.0001). Acetate was also significantly lower in treated versus untreated hypertensive patients or controls (1112 ± 27 versus 1228 ± 40 and 1327 ± 63 nmol/l, P < 0.01), with this finding more pronounced with increasing number of antihypertensive therapies. In contrast, propionate was lower and butyrate significantly higher in those with essential hypertension compared with controls (propionate: 25.2 ± 7.5 versus 58.6 ± 7.6 nmol/ml, P < 0.0001; butyrate: 46.5 ± 3.5 versus 14.7 ± 9.9 nmol/ml, P < 0.01). A novel and perhaps clinically relevant observation was the significant difference in acetate and propionate levels between patients taking ACE inhibitors or angiotensin-receptor blockers.
Conclusion: The present study has highlighted differences in circulating short-chain fatty acids in different hypertensive phenotypes and a possible influence of drug number and class. Although further research is necessary, this may represent a novel therapeutic target, particularly in patients with resistant hypertension.
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
References
-
- Global Burden of Disease Research Foundation Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388:1659–1724.
-
- Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive Summary: Heart Disease and Stroke Statistics--2016 Update: a report from the American Heart Association. Circulation 2016; 133:447–454.
-
- Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903–1913.
-
- Turnbull F, Blood Pressure Lowering Treatment Trialists Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003; 362:1527–1535.
-
- Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937–952.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous