Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 13;27(14):4477.
doi: 10.3390/molecules27144477.

A Specific HPLC Method to Determine Residual HEPES in [68Ga]Ga-Radiopharmaceuticals: Development and Validation

Affiliations

A Specific HPLC Method to Determine Residual HEPES in [68Ga]Ga-Radiopharmaceuticals: Development and Validation

Silvia Migliari et al. Molecules. .

Abstract

Background: Nowadays, in Nuclear Medicine, clinically applied radiopharmaceuticals must meet quality release criteria such as high radiochemical purity and radiochemical yield. Many radiopharmaceuticals do not have marketing authorization and have no dedicated monograph within European Pharmacopeia (Ph. Eur.); therefore, general monographs on quality controls (QCs) have to be applied for clinical application. These criteria require standardization and validation in labeling and preparation, including quality controls measurements, according to well defined standard operation procedures. However, QC measurements are often based on detection techniques that are specific to a certain chromatographic system. Several radiosyntheses of [68Ga]Ga-radiopharmaceuticals are more efficient and robust when they are performed with 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES) buffer, which is considered as an impurity to be assessed in the QC procedure, prior to clinical use. Thus, Ph. Eur. has introduced a thin-layer chromatography (TLC) method to quantify the HEPES amount that is present in [68Ga]Ga-radiopharmaceuticals. However, this is only qualitative and has proven to be unreliable. Here we develop and validate a new high-performance liquid chromatography (UV-Radio-HPLC) method to quantify the residual amount of HEPES in 68Ga-based radiopharmaceuticals. Method: To validate the proposed UV-Radio-HPLC method, a stepwise approach was used, as defined in the guidance document that was adopted by the European Medicines Agency (CMP/ICH/381/95 2014). The assessed parameters are specificity, linearity, precision (repeatability), accuracy, and limit of quantification. A range of concentrations of HEPES (100, 80, 60, 40, 20, 10, 5, 3 μg/mL) were analyzed. Moreover, to test the validity and pertinence of our new HPLC method, we analyzed samples of [68Ga]Ga-DOTATOC; [68Ga]Ga-PSMA; [68Ga]Ga-DOTATATE; [68Ga]Ga-Pentixafor; and [68Ga]Ga-NODAGA-Exendin-4 from different batches that were prepared for clinical use. Results: In the assessed samples, HEPES could not be detected by the TLC method that was described in Ph. Eur. within 4 min incubation in an iodine-saturated chamber. Our developed HPLC method showed excellent linearity between 3 and 100 μg/mL for HEPES, with a correlation coefficient (R2) for calibration curves that was equal to 0.999, coefficients of variation (CV%) < 2%, and percent deviation value of bias from 100% to 5%, in accordance with acceptance criteria. The intra-day and inter-day precision of our method was statistically confirmed and the limit-of-quantification (LOQ) was 3 μg/mL, confirming the high sensitivity of the method. The amount of HEPES that was detected with our developed HPLC method in the tested [68Ga]Ga-radiopharmaceuticals resulted well below the Ph. Eur. limit, especially for [68Ga]Ga-NODAGA-Exendin-4. Conclusions: The TLC method that is described in Ph. Eur. to assess residual HEPES in [68Ga]-based radiopharmaceuticals may not be sufficiently sensitive and thus unsuitable for QC release. Our new HPLC method was sensitive, quantitative, reproducible, and rapid for QCs, allowing us to exactly determine the residual HEPES amount in [68Ga]Ga-radiopharmaceuticals for safe patient administration.

Keywords: HEPES; [68Ga]Ga-radiopharmaceuticals; quality controls; validation of HPLC method.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structure of HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid).
Figure 2
Figure 2
Overlay of the HPLC chromatograms of the analyzed HEPES solutions (100, 80, 60, 40, 20, 10, 5, 3 ug/mL).
Figure 3
Figure 3
HPLC chromatograms: (a) blank; (b) sample of HEPES solution.
Figure 3
Figure 3
HPLC chromatograms: (a) blank; (b) sample of HEPES solution.
Figure 4
Figure 4
Calibration curve obtained with the average values of peak areas of five different concentrations (100, 80, 60, 40, 20, 10, 5, 3 ug/mL) of HEPES.
Figure 5
Figure 5
HPLC chromatogram of HEPES content in [68Ga]Ga-DOTATOC (a); [68Ga]Ga-PSMA (b); [68Ga]Ga-NODAGA-Exendin-4 (c); and [68Ga]Ga-Pentixafor (d).
Figure 5
Figure 5
HPLC chromatogram of HEPES content in [68Ga]Ga-DOTATOC (a); [68Ga]Ga-PSMA (b); [68Ga]Ga-NODAGA-Exendin-4 (c); and [68Ga]Ga-Pentixafor (d).
Figure 6
Figure 6
HPLC chromatogram of “cold” Ga-NODAGA-Exendin-4 to assess the content of HEPES in the final radiopharmaceutical.

References

    1. Guideline on Quality, Non-Clinical and Clinical Requirements 5 for Investigational Advanced Therapy Medicinal Products 6 in Clinical Trials. EMA. 2019. [(accessed on 10 June 2022)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guidel....
    1. European Directorate for the Quality of Medicines and HealthCare (EDQM) [(accessed on 10 June 2022)]. Available online: https://www.edqm.eu/en/
    1. NBP-MN, GU 2005 Decreto Ministero della Salute del 30 marzo 2005. Approvazione I Supplemento alla XI Edizione Della Farmacopea Ufficiale Italiana, Riguardante le “Norme di Buona Preparazione dei Radiofarmaci in Medicina Nucleare”. [(accessed on 10 June 2022)]. Available online: https://www.gazzettaufficiale.it/eli/gu/2010/11/23/274/so/259/sg/pdf.
    1. Decristoforo C., Penuelas I., Patt M., Todde S. European regulations for the introduction of novel radiopharmaceuticals in the clinical setting. Q. J. Nucl. Med. Mol. Imaging. 2017;61:135–144. doi: 10.23736/S1824-4785.17.02965-X. - DOI - PubMed
    1. Elsinga P., Todde S., Penuelas I., Meyer G., Farstad B., Faivre-Chauvet A., Mikolajczak R., Westera G., Gmeiner-Topar T., Decristoforo C. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Radiopharmacy Committee of the EANM. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:1049–1062. doi: 10.1007/s00259-010-1407-3. - DOI - PMC - PubMed

LinkOut - more resources