Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 19;12(14):2467.
doi: 10.3390/nano12142467.

Enhanced Visible Light-Driven Photoelectrocatalytic Degradation of Paracetamol at a Ternary z-Scheme Heterojunction of Bi2WO6 with Carbon Nanoparticles and TiO2 Nanotube Arrays Electrode

Affiliations

Enhanced Visible Light-Driven Photoelectrocatalytic Degradation of Paracetamol at a Ternary z-Scheme Heterojunction of Bi2WO6 with Carbon Nanoparticles and TiO2 Nanotube Arrays Electrode

Nondumiso Mahhumane et al. Nanomaterials (Basel). .

Abstract

In this study, a ternary z-scheme heterojunction of Bi2WO6 with carbon nanoparticles and TiO2 nanotube arrays was used to remove paracetamol from water by photoelectrocatalysis. The materials and z-scheme electrode were characterised using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), EDS mapping, ultraviolet diffuse reflection spectroscopy (UV-DRS), photocurrent measurement, electrochemical impedance spectroscopy (EIS), uv-vis spectroscopy and total organic carbon measurement (TOC). The effect of parameters such as current density and pH were studied. At optimal conditions, the electrode was applied for photoelectrocatalytic degradation of paracetamol, which gave a degradation efficiency of 84% within 180 min. The total organic carbon removal percentage obtained when using this electrode was 72%. Scavenger studies revealed that the holes played a crucial role during the photoelectrocatalytic degradation of paracetamol. The electrode showed high stability and reusability therefore suggesting that the z-scheme Bi2WO6-CNP-TiO2 nanotube arrays electrode is an efficient photoanode for the degradation of pharmaceuticals in wastewater.

Keywords: bismuth tungstate; carbon nanoparticle; paracetamol; photoelectrocatalytic degradation; titania nanotube array; water treatment; z-scheme heterojunction.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic diagram of prepared Bi2WO6-CNP-TiO2 NTA z-scheme photoanode used for photoelectrocatalytic degradation of paracetamol in a three-electrode cell.
Figure 2
Figure 2
XRD patterns of (a) Bi2WO6 and Bi2WO6-CNP, (b) TiO2 NTA and Bi2WO6-CNP-TiO2 NTA. FESEM images of (c) Bi2WO6; (d) Bi2WO6-CNP; (e) TiO2 NTA; (f) Bi2WO6-CNP-TiO2 NTA; (g) EDS spectrum of Bi2WO6-CNP-TiO2 NTA and (h) EDS elemental mapping of Bi2WO6-CNP-TiO2 NTA electrode.
Figure 2
Figure 2
XRD patterns of (a) Bi2WO6 and Bi2WO6-CNP, (b) TiO2 NTA and Bi2WO6-CNP-TiO2 NTA. FESEM images of (c) Bi2WO6; (d) Bi2WO6-CNP; (e) TiO2 NTA; (f) Bi2WO6-CNP-TiO2 NTA; (g) EDS spectrum of Bi2WO6-CNP-TiO2 NTA and (h) EDS elemental mapping of Bi2WO6-CNP-TiO2 NTA electrode.
Figure 2
Figure 2
XRD patterns of (a) Bi2WO6 and Bi2WO6-CNP, (b) TiO2 NTA and Bi2WO6-CNP-TiO2 NTA. FESEM images of (c) Bi2WO6; (d) Bi2WO6-CNP; (e) TiO2 NTA; (f) Bi2WO6-CNP-TiO2 NTA; (g) EDS spectrum of Bi2WO6-CNP-TiO2 NTA and (h) EDS elemental mapping of Bi2WO6-CNP-TiO2 NTA electrode.
Figure 3
Figure 3
(a) UV-Visible diffuse reflectance spectra TiO2 NTA Bi2WO6-CNP- TiO2 NTA (b) photocurrent responses of TiO2 NTA and Bi2WO6-CNP- TiO2 NTA in 0.1 M Na2SO4 (c) schematic diagram of Z-scheme mechanism of Bi2WO6-CNP-TiO2 NTA electrode (d) Nyquist plot TiO2 NTA and Bi2WO6-CNP- TiO2 NTA photoanodes in 5 mM [Fe(CN)6]3−/4− in 0.1 M KCl (pH 7).
Figure 4
Figure 4
(a) UV-Vis spectra of PEC degradation of paracetamol; (b) normalised concentration decay versus time plot for photocatalytic, electrocatalytic and photoelectrocatalytic degradation of paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode and (c) corresponding kinetics plots; (d) normalised concentration decay versus time plot for PEC degradation of Paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode. (e) Effects of current density and (f) pH on the degradation of paracetamol. (g) Reusability cycle experiments for the degradation of paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode.
Figure 4
Figure 4
(a) UV-Vis spectra of PEC degradation of paracetamol; (b) normalised concentration decay versus time plot for photocatalytic, electrocatalytic and photoelectrocatalytic degradation of paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode and (c) corresponding kinetics plots; (d) normalised concentration decay versus time plot for PEC degradation of Paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode. (e) Effects of current density and (f) pH on the degradation of paracetamol. (g) Reusability cycle experiments for the degradation of paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode.
Figure 4
Figure 4
(a) UV-Vis spectra of PEC degradation of paracetamol; (b) normalised concentration decay versus time plot for photocatalytic, electrocatalytic and photoelectrocatalytic degradation of paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode and (c) corresponding kinetics plots; (d) normalised concentration decay versus time plot for PEC degradation of Paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode. (e) Effects of current density and (f) pH on the degradation of paracetamol. (g) Reusability cycle experiments for the degradation of paracetamol on of Bi2WO6-CNP–TiO2 NTA electrode.
Figure 5
Figure 5
Scavenger studies of the photoelectrocatalytic degradation of Paracetamol on Bi2WO6-CNP-TiO2 NTA.

References

    1. Olvera-Rodríguez I., Hernández R., Medel A., Guzmán C., Escobar-Alarcón L., Brillas E., Sirés I., Esquivel K. TiO2 /Au/ TiO2 Multilayer Thin-Film Photoanodes Synthesized by Pulsed Laser Deposition for Photoelectrochemical Degradation of Organic Pollutants. Sep. Purif. Technol. 2019;224:189–198. doi: 10.1016/j.seppur.2019.05.020. - DOI
    1. Högestätt E.D., Jönsson B.A.G., Ermund A., Andersson D.A., Björk H., Alexander J.P., Cravatt B.F., Basbaum A.I., Zygmunt P.M. Conversion of Acetaminophen to the Bioactive N-Acylphenolamine AM404 via Fatty Acid Amide Hydrolase-Dependent Arachidonic Acid Conjugation in the Nervous System. J. Biol. Chem. 2005;280:31405–31412. doi: 10.1074/jbc.M501489200. - DOI - PubMed
    1. López Zavala M.Á., Jaber Lara C.R. Degradation of Paracetamol and Its Oxidation Products in Surface Water by Electrochemical Oxidation. Environ. Eng. Sci. 2018;35:1248–1254. doi: 10.1089/ees.2018.0023. - DOI - PMC - PubMed
    1. Dalgic G., Turkdogan F.I., Yetilmezsoy K., Kocak E. Treatment of Real Paracetamol. Chem. Ind. Chem. Eng. Q. 2017;23:177–186. doi: 10.2298/CICEQ150831029D. - DOI
    1. Fatima S., Asif N., Ahmad R., Fatma T. Toxicity of NSAID Drug (Paracetamol) to Nontarget Organism—Nostoc Muscorum. Environ. Sci. Pollut. Res. 2020;27:35208–35216. doi: 10.1007/s11356-020-09802-0. - DOI - PubMed

LinkOut - more resources