Biosynthetic Nanobubble-Mediated CRISPR/Cas9 Gene Editing of Cdh2 Inhibits Breast Cancer Metastasis
- PMID: 35890278
- PMCID: PMC9319454
- DOI: 10.3390/pharmaceutics14071382
Biosynthetic Nanobubble-Mediated CRISPR/Cas9 Gene Editing of Cdh2 Inhibits Breast Cancer Metastasis
Abstract
The epithelial-mesenchymal transition (EMT), a process in which epithelial cells undergo a series of biochemical changes to acquire a mesenchymal phenotype, has been linked to tumor metastasis. Here, we present a novel strategy for knocking out the EMT-related Cdh2 gene, which encodes N-cadherin through CRISPR/Cas9-mediated gene editing by an ultrasound combined with biosynthetic nanobubbles (Gas Vesicles, GVs). Polyethyleneimine were employed as a gene delivery vector to deliver sgRNA into 4T1 cells that stably express the Cas9 protein, resulting in the stable Cdh2 gene- knockout cell lines. The Western blotting assay confirmed the absence of an N-cadherin protein in these Cdh2 gene-knockout 4T1 cell lines. Significantly reduced tumor cell migration was observed in the Cdh2 gene-knockout 4T1 cells in comparison with the wild-type cells. Our study demonstrated that an ultrasound combined with GVs could effectively mediate CRISPR/Cas9 gene editing of a Cdh2 gene to inhibit tumor invasion and metastasis.
Keywords: CRISPR/Cas9; N-cadherin; epithelial–mesenchymal transition; gene editing; ultrasound.
Conflict of interest statement
The authors declare no conflict of interest. The company had no role in the design of the study; in the collection, analyses, or inter-pretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures






References
-
- Hennessy B.T., Gonzalez-Angulo A.M., Stemke-Hale K., Gilcrease M.Z., Krishnamurthy S., Lee J.S., Fridlyand J., Sahin A., Agarwal R., Joy C., et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69:4116–4124. doi: 10.1158/0008-5472.CAN-08-3441. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials