Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 27;256(3):50.
doi: 10.1007/s00425-022-03961-9.

Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species

Affiliations

Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species

Sergio S Samoluk et al. Planta. .

Abstract

Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity. Such diversity is determined mainly by the amount and composition of repetitive DNA. Here we performed computational analysis on low coverage genome sequencing to infer the dynamics of changes in major repeat families that led to the differentiation of genomes in diploid species (x = 10) of genus Arachis, focusing on section Arachis. Estimated repeat content ranged from 62.50 to 71.68% of the genomes. Species with different genome composition tended to have different landscapes of repeated sequences. Athila family retrotransposons were the most abundant and variable lineage among Arachis repeatomes, with peaks of transpositional activity inferred at different times in the evolution of the species. Satellite DNAs (satDNAs) were less abundant, but differentially represented among species. High rates of evolution of an AT-rich superfamily of satDNAs led to the differential accumulation of heterochromatin in Arachis genomes. The relationship between genome size variation and the repetitive content is complex. However, largest genomes presented a higher accumulation of LTR elements and lower contents of satDNAs. In contrast, species with lowest genome sizes tended to accumulate satDNAs in detriment of LTR elements. Phylogenetic analysis based on repetitive DNA supported the genome arrangement of section Arachis. Altogether, our results provide the most comprehensive picture on the repeatome dynamics that led to the genome differentiation of Arachis species.

Keywords: Arachis species; Athila retroelements; Genome differentiation; Genome size variation; Satellite DNA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alioto T, Alexiou KG, Bardil A et al (2020) Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J 101:455–472 - PubMed - DOI
    1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410 - PubMed - DOI
    1. Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, Koblížková A, Macas J, Lysak MA (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 107:255–268 - PubMed - DOI
    1. Ammiraju JS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Walling JG, Ma J, Talag J, Brar DS, SanMiguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 52:342–351 - PubMed - DOI
    1. Bechara MD, Moretzsohn MC, Palmieri DA, Monteiro JP, Bacci M, Martins J, Valls JFM, Lopes CR, Gimenes MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8 S rDNA sequences. BMC Plant Biol 10:255 - PubMed - PMC - DOI

LinkOut - more resources