Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;37(7):2521-2532.
doi: 10.1007/s11011-022-01039-9. Epub 2022 Jul 27.

Genistein suppresses microglial activation and inhibits apoptosis in different brain regions of hypoxia-exposed mice model of amnesia

Affiliations

Genistein suppresses microglial activation and inhibits apoptosis in different brain regions of hypoxia-exposed mice model of amnesia

Mohammad Rumman et al. Metab Brain Dis. 2022 Oct.

Abstract

Genistein (GE) or 4',5,7-trihydroxyflavone, a plant derived isoflavone, is a biologically active compound having several beneficial properties. Studies showed that GE possesses anti-neoplastic, anti-tumor, anti-helminthic, anti-oxidant, and anti-inflammatory activities. Herein, we investigated the neuroprotective effects of GE in a mouse model of hypoxia-induced amnesia. Mice were exposed to hypoxic conditions (10% O2) in a designated hypoxia chamber and co-treated with GE (10, 20, or 30 mg/kg) for 4 weeks. Following this, behavioral tests were performed to evaluate memory performance. We assessed microglial activation in the hippocampus, amygdala, and pre-frontal cortex (PFC) regions by evaluating the Iba-1 and GFAP transcript levels, and MIP-1β, Cox-2, and IL6 protein levels. Apoptosis was assessed by evaluating Bax, BAD, and Bcl-2 mRNA levels, and caspase-3 activity. To uncover the underlying molecular mechanism, we evaluated the levels of Nrf2, HO-1, and NQO1 in different brain regions of mice from all groups. Results showed that hypoxia-exposed mice have reduced performance in the behavioral tests and GE treatment enhanced the memory performance in hypoxia-exposed mice. Moreover, hypoxia-exposed mice showed increased expression of microglial activation markers and enhanced apoptosis in the hippocampus, amygdala, and PFC. GE treatment suppressed microglial activation and prevented apoptosis in the brain of hypoxia-exposed mice. Furthermore, hypoxia-exposure reduced the expression of Nrf2, NQO1, and HO-1 while GE treatment ameliorated this decrease in different regions of hypoxia-exposed mice brain. In conclusion, GE prevents cognitive dysfunction by suppressing microglial activation and inhibiting apoptosis in the hypoxia-exposed mice brain.

Keywords: Amnesia; Caspase-3; Genistein; Hypoxia; Neuro-inflammation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9(30):2499–2511. https://doi.org/10.2174/1381612033453730 - DOI - PubMed
    1. Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6(3):259–280 - DOI
    1. Allen RJ (2018) Classic and recent advances in understanding amnesia. F1000Res 7:331. https://doi.org/10.1268/f1000research.13737.1 - DOI - PubMed - PMC
    1. Arya A, Sethy NK, Singh SK, Das M, Bhargava K (2013) Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomed 8:4507–4520. https://doi.org/10.2147/IJN.S53032 - DOI
    1. Bachiller S, Jimenez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A (2018) Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12:488. https://doi.org/10.3389/fncel.2018.00488 - DOI - PubMed - PMC

Publication types

MeSH terms

LinkOut - more resources