SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome
- PMID: 35895291
- DOI: 10.1002/cpz1.492
SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome
Abstract
Cysteine-directed chemoproteomic profiling methods yield high-throughput inventories of redox-sensitive and ligandable cysteine residues and therefore are enabling techniques for functional biology and drug discovery. However, the cumbersome nature of many sample preparation workflows, the requirements for large amounts of input material, and the modest yields of labeled peptides are limitations that hinder most chemoproteomics studies. Here, we report an optimized chemoproteomic sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample preparation (SP3) to improve the recovery of biotinylated peptides, even from small samples. We further tailor our SP3 method to specifically probe the redox proteome, which showcases the utility of the SP3 platform in multistep sample-preparation workflows. By implementing a customized workflow in the FragPipe computational pipeline, we achieve accurate MS1-based quantification, including for peptides containing multiple cysteine residues. Collectively these innovations enable enhanced high-throughput quantitative analysis of the cysteinome. This article includes detailed protocols for cysteine labeling with isotopically labeled iodoacetamide alkyne probes, biotinylation with CuAAC, sample cleanup with SP3, enrichment of cysteines with NeutrAvidin agarose beads, LC-FAIMS-MS/MS analysis, and FragPipe-IonQuant analysis. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Labeling of cysteines in human proteome and SP3-based sample cleanup Alternate Protocol 1: Labeling of cysteines in human proteome, SP3-based sample cleanup, and enrichment of cysteines for isoTOP-ABPP analysis Alternate Protocol 2: Labeling of cysteines in human proteome and SP3-based sample cleanup for redox proteome analysis Basic Protocol 2: Peptide-level cysteine enrichment Basic Protocol 3: LC-FAIMS-MS/MS analysis Basic Protocol 4: FragPipe data analysis.
Keywords: FAIMS; FragPipe; SP3; chemoproteomics; cysteine; redox proteome.
© 2022 Wiley Periodicals LLC.
Similar articles
-
SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*.Chembiochem. 2021 May 14;22(10):1841-1851. doi: 10.1002/cbic.202000870. Epub 2021 Feb 18. Chembiochem. 2021. PMID: 33442901 Free PMC article.
-
SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.Mol Cell Proteomics. 2022 Apr;21(4):100218. doi: 10.1016/j.mcpro.2022.100218. Epub 2022 Feb 25. Mol Cell Proteomics. 2022. PMID: 35219905 Free PMC article.
-
A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.Curr Protoc. 2022 Jun;2(6):e425. doi: 10.1002/cpz1.425. Curr Protoc. 2022. PMID: 35674286
-
[Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].Se Pu. 2023 Jan;41(1):14-23. doi: 10.3724/SP.J.1123.2022.05013. Se Pu. 2023. PMID: 36633073 Free PMC article. Review. Chinese.
-
Applications of Reactive Cysteine Profiling.Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120. Curr Top Microbiol Immunol. 2019. PMID: 30105421 Review.
Cited by
-
Multi-omic stratification of the missense variant cysteinome.bioRxiv [Preprint]. 2023 Aug 14:2023.08.12.553095. doi: 10.1101/2023.08.12.553095. bioRxiv. 2023. Update in: Nat Commun. 2024 Oct 28;15(1):9284. doi: 10.1038/s41467-024-53520-x. PMID: 37645963 Free PMC article. Updated. Preprint.
-
Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics.Commun Chem. 2024 Apr 10;7(1):80. doi: 10.1038/s42004-024-01162-x. Commun Chem. 2024. PMID: 38600184 Free PMC article.
-
Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics.J Am Chem Soc. 2023 Oct 4;145(39):21303-21318. doi: 10.1021/jacs.3c05797. Epub 2023 Sep 22. J Am Chem Soc. 2023. PMID: 37738129 Free PMC article.
-
Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics.JACS Au. 2023 Dec 13;3(12):3506-3523. doi: 10.1021/jacsau.3c00707. eCollection 2023 Dec 25. JACS Au. 2023. PMID: 38155636 Free PMC article.
-
Chemoproteogenomic stratification of the missense variant cysteinome.Nat Commun. 2024 Oct 28;15(1):9284. doi: 10.1038/s41467-024-53520-x. Nat Commun. 2024. PMID: 39468056 Free PMC article.
References
Literature Cited
References
-
- Abo, M., Li, C., & Weerapana, E. (2018). Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Molecular Pharmaceutics, 15(3), 743-749. doi: 10.1021/acs.molpharmaceut.7b00832
-
- Backus, K. M. (2019). Applications of reactive cysteine profiling. Current Topics in Microbiology and Immunology, 420, 375-417. doi: 10.1007/82_2018_120
-
- Backus, K. M., Correia, B. E., Lum, K. M., Forli, S., Horning, B. D., González-Páez, G. E., … Cravatt, B. F. (2016). Proteome-wide covalent ligand discovery in native biological systems. Nature, 534(7608), 570-574. doi: 10.1038/nature18002
-
- Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., … Lipford, J. R. (2019). The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217-223. doi: 10.1038/S41586-019-1694-1
-
- Cao, J., Boatner, L. M., Desai, H. S., Burton, N. R., Armenta, E., Chan, N. J., … Backus, K. M. (2021). Multiplexed CuAAC Suzuki-Miyaura labeling for tandem activity-based chemoproteomic profiling. Analytical Chemistry, 93(4), 2610-2618. doi: 10.1021/acs.analchem.0c04726
Internet Resources
-
- EASY-nLC 1200-Troubleshooting and Maintenance Guide.
-
- FragPipe website https://fragpipe.nesvilab.org/
-
- FragPipe Github https://github.com/Nesvilab/FragPipe
MeSH terms
Substances
LinkOut - more resources
Full Text Sources