Development, characterization and In-vitro evaluation of guar gum based new polymeric matrices for controlled delivery using metformin HCl as model drug
- PMID: 35901085
 - PMCID: PMC9333214
 - DOI: 10.1371/journal.pone.0271623
 
Development, characterization and In-vitro evaluation of guar gum based new polymeric matrices for controlled delivery using metformin HCl as model drug
Abstract
Currently, hydrogels are considered as ideal biomaterials due to their unique structure and characteristics that facilitates considerable hydrophilicity, swelling, drug loading and release. In this study, we report pH-responsive GG-MAA-AMPS hydrogel delivery system prepared via free radical polymerization technique. Hydrogels were loaded with Metformin HCl as a model drug. Hydrogels were characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). FTIR confirmed the successful crosslinking of reactants, hydrogel network formation and drug loading. TGA and DSC proved the higher thermal stability of reactants after crosslinking and drug loading. XRD analysis showed decrease in crystallinity of drug after loading into the hydrogels. SEM revealed smooth and glassy appearance of both loaded and unloaded hydrogels. Gel content was increased with increase in concentration of reactants. Drug entrapment was decreased by increasing concentration of GG and AMPS while MAA acted inversely. Hydrogels displayed pH-dependent swelling and drug release behavior being high at pH 6.8 and 7.4 while low at acidic pH (1.2). Oral tolerability in rabbits showed that hydrogels were safe without causing any hematological or histopathological changes in healthy rabbits. Based on the obtained results, GG-MAA-AMPS can be considered as potential carrier for metformin HCl as well as other hydrophilic drugs.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                References
- 
    
- Kaith B, Jindal R, Kumar V, Bhatti MS. Optimal response surface design of Gum tragacanth-based poly [(acrylic acid)-co-acrylamide] IPN hydrogel for the controlled release of the antihypertensive drug losartan potassium. RSC advances. 2014;4(75):39822–9.
 
 - 
    
- Khan SA, Azam W, Ashames A, Fahelelbom KM, Ullah K, Mannan A, et al.. β-Cyclodextrin-based (IA-co-AMPS) Semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-Vitro and in-Vivo evaluation. Journal of Drug Delivery Science and Technology. 2020;60:101970.
 
 
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
