Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Oct:142:105508.
doi: 10.1016/j.archoralbio.2022.105508. Epub 2022 Jul 13.

Fluoride and trimetaphosphate association as a novel approach for remineralization and antiproteolytic activity in dentin tissue

Affiliations
Free article
Randomized Controlled Trial

Fluoride and trimetaphosphate association as a novel approach for remineralization and antiproteolytic activity in dentin tissue

Gabriel Pereira Nunes et al. Arch Oral Biol. 2022 Oct.
Free article

Abstract

Objective: The study evaluated the effect of solutions containing fluoride (F) and/or sodium trimetaphosphate (TMP) and F/TMP on the inhibition of MMP-2 and MMP-9, and on dentin remineralization in vitro.

Design: Bovine root dentin blocks were prepared, and caries-like lesions were induced in two thirds of the surface. Blocks were then randomly divided into 13 groups/solutions (n = 10): Placebo; 0.3 %, 1 % and 3 % NaOH-hydrolyzed TMP; 0.3 %, 1 % and 3 % TMP; 250, 500 and 1100 ppm F; 250 ppm F + 0.3 % TMP; 500 ppm F + 1 % TMP and 1100 ppm F + 3 % TMP. One third of each specimen was treated with the respective solutions in pH-cycling. The mineral concentration (gHAp × cm-3 × µm) was determined by computed X-ray microtomography, and data submitted to ANOVA and Student-Newman-Keuls' test (p < 0.05). The ability of the solutions to inhibit MMP-2 and MMP-9 activity was assessed by zymography.

Results: F/TMP association led to less mineral loss in the deeper region of the lesion and reduced the depth of lesions when compared to its counterpart without TMP (p < 0.001). 3 % TMP (hydrolyzed or not), 500 ppm F and 1100 ppm F completely inhibited MMP-2 activity, while for MMP-9 such effects were only achieved by treatment with 1100 ppm F + 3 % TMP.

Conclusion: Treatment with 1100 ppm F + 3 % TMP fully inhibits the gelatinolytic activity of MMPs-2 and - 9 and shows greater remineralizing capacity in artificial caries lesions in dentin. However, hydrolyzing TMP does not improve its anti-proteolytic activity and its remineralizing capacity.

Keywords: Dentin; Fluoride; Matrix metalloproteinases; Phosphate; Remineralization.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources