Compound-specific isotope analysis (CSIA) evaluation of degradation of chlorinated benzenes (CBs) and benzene in a contaminated aquifer
- PMID: 35901656
- DOI: 10.1016/j.jconhyd.2022.104051
Compound-specific isotope analysis (CSIA) evaluation of degradation of chlorinated benzenes (CBs) and benzene in a contaminated aquifer
Abstract
Compound-specific isotope analysis (CSIA) has become a valuable tool in understanding the fate of organic contaminants at field sites. However, its application to chlorinated benzenes (CBs), a group of toxic and persistent groundwater contaminants, has received less attention. This study employed CSIA to investigate the occurrence of natural degradation of various CBs and benzene in a contaminated aquifer. Despite the complexity of the study area (e.g., installation of a sheet pile barrier and the presence of a complex set of contaminants), the substantial enrichments in δ13C values (i.e., >2‰) for all CBs and benzene across the sampling wells indicate in situ degradation of these compounds. In particular, the 13C enrichments for 1,2,4-trichlorobenzene (1,2,4-TCB) and 1,2-dichlorobenzene (1,2-DCB) display good correlations with decreasing groundwater concentrations, consistent with the effects of in situ biodegradation. Using the Rayleigh model, the extent of degradation (EoD) is estimated to be 47-99% for 1,2-DCB, and 21-73% for 1,2,4-TCB. The enrichments observed for the other CBs (1,4-DCB and chlorobenzene (MCB)) and benzene at the site are also suggestive of in situ biodegradation. Due to simultaneous degradation and production of 1,4-DCB (a major 1,2,4-TCB degradation product), MCB (from DCB degradation), and benzene (from MCB degradation), the estimation of EoD for these intermediate compounds is more complex but a modelling simulation supports in situ biodegradation of these daughter products. In particular, the fact that the δ13C values of MCB and benzene (i.e., daughter products of 1,2,4-TCB) are more enriched than the original δ13C value of their parent 1,2,4-TCB provides definitive evidence for the occurrence of in situ biodegradation of the MCB and benzene.
Keywords: Benzene; CSIA; Carbon isotopes; Chlorinated benzenes; In situ degradation.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
