A modular spring-loaded actuator for mechanical activation of membrane proteins
- PMID: 35902570
- PMCID: PMC9334261
- DOI: 10.1038/s41467-022-30745-2
A modular spring-loaded actuator for mechanical activation of membrane proteins
Abstract
How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells.
© 2022. The Author(s).
Conflict of interest statement
INSERM (Institut National de la Santé et de la Recherche Médicale), Centre national de la recherche scientifique, and Université de Montpellier have submitted a patent application to the European patent Office pertaining to a nucleic acid origami modular device which can be used for exerting high throughput mechanical forces and constraints on surfaces (application number EP22305969.2). G.B. and A.M. are co-inventors, the remaining authors declare no competing interests.
Figures




Similar articles
-
Force-induced focal adhesion translocation: effects of force amplitude and frequency.Am J Physiol Cell Physiol. 2004 Oct;287(4):C954-62. doi: 10.1152/ajpcell.00567.2003. Epub 2004 Jun 9. Am J Physiol Cell Physiol. 2004. PMID: 15189816
-
Molecular Tension Probes for Imaging Forces at the Cell Surface.Acc Chem Res. 2017 Dec 19;50(12):2915-2924. doi: 10.1021/acs.accounts.7b00305. Epub 2017 Nov 21. Acc Chem Res. 2017. PMID: 29160067 Free PMC article. Review.
-
DNA-functionalized artificial mechanoreceptor for de novo force-responsive signaling.Nat Chem Biol. 2024 Aug;20(8):1066-1077. doi: 10.1038/s41589-024-01572-x. Epub 2024 Mar 6. Nat Chem Biol. 2024. PMID: 38448735
-
Mechanism of Focal Adhesion Kinase Mechanosensing.PLoS Comput Biol. 2015 Nov 6;11(11):e1004593. doi: 10.1371/journal.pcbi.1004593. eCollection 2015 Nov. PLoS Comput Biol. 2015. PMID: 26544178 Free PMC article.
-
Feeling green: mechanosensing in plants.Trends Cell Biol. 2009 May;19(5):228-35. doi: 10.1016/j.tcb.2009.02.005. Epub 2009 Apr 1. Trends Cell Biol. 2009. PMID: 19342240 Review.
Cited by
-
Multi-Reconfigurable DNA Origami Nanolattice Driven by the Combination of Orthogonal Signals.JACS Au. 2023 Apr 27;3(5):1435-1442. doi: 10.1021/jacsau.3c00091. eCollection 2023 May 22. JACS Au. 2023. PMID: 37234113 Free PMC article.
-
DNA-Based Molecular Machines: Controlling Mechanisms and Biosensing Applications.Biosensors (Basel). 2024 May 8;14(5):236. doi: 10.3390/bios14050236. Biosensors (Basel). 2024. PMID: 38785710 Free PMC article. Review.
-
Morphology remodelling and membrane channel formation in synthetic cells via reconfigurable DNA nanorafts.Nat Mater. 2025 Feb;24(2):278-286. doi: 10.1038/s41563-024-02075-9. Epub 2025 Jan 13. Nat Mater. 2025. PMID: 39805958 Free PMC article.
-
Precise construction of DNA origami-based materials for functional regulation on biological interface.Smart Mol. 2024 Mar 4;2(1):e20230032. doi: 10.1002/smo.20230032. eCollection 2024 Mar. Smart Mol. 2024. PMID: 40625526 Free PMC article. Review.
-
The motive forces in DNA-enabled nanomachinery.iScience. 2024 Mar 8;27(4):109453. doi: 10.1016/j.isci.2024.109453. eCollection 2024 Apr 19. iScience. 2024. PMID: 38551008 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources