Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec;28(12):5359-5374.
doi: 10.1038/s41380-022-01693-6. Epub 2022 Jul 29.

Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology

Affiliations

Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology

Yunseon Yang et al. Mol Psychiatry. 2023 Dec.

Erratum in

Abstract

There is a compelling need to develop disease-modifying therapies for Alzheimer's disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid β and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.

PubMed Disclaimer

References

    1. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39. - PubMed - PMC
    1. Hampel H, Caraci F, Cuello AC, Caruso G, Nistico R, Corbo M, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456. - PubMed - PMC
    1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421. - PubMed - PMC
    1. Horner PJ, Palmer TD. New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci. 2003;26:597–603. - PubMed
    1. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–30. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources