Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;14(10):1158-1164.
doi: 10.1038/s41557-022-01003-1. Epub 2022 Jul 28.

σ-σ Stacked supramolecular junctions

Affiliations

σ-σ Stacked supramolecular junctions

Anni Feng et al. Nat Chem. 2022 Oct.

Abstract

Intermolecular charge transport plays an essential role in organic electronic materials and biological systems. To date, experimental investigations of intermolecular charge transport in molecular materials and electronic devices have been restricted to conjugated systems in which π-π stacking interactions are involved. Herein we demonstrate that the σ-σ stacking interactions between neighbouring non-conjugated molecules offer an efficient pathway for charge transport through supramolecular junctions. The conductance of σ-σ stacked molecular junctions formed between two non-conjugated cyclohexanethiol or single-anchored adamantane molecules is comparable to that of π-π stacked molecular junctions formed between π-conjugated benzene rings. The current-voltage characteristics and flicker noise analysis demonstrate the existence of stacked molecular junctions formed between the electrode pairs and exhibit the characteristics of through-space charge transport. Density functional theory calculations combined with the non-equilibrium Green's function method reveal that efficient charge transport occurs between two molecules configured with σ-σ stacking interactions.

PubMed Disclaimer

References

    1. Kim, T., Park, J. Y., Hwang, J., Seo, G. & Kim, Y. Supramolecular two-dimensional systems and their biological applications. Adv. Mater. 32, 2002405 (2020). - DOI
    1. Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, aaf5508 (2016). - PubMed - DOI
    1. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017). - PubMed - PMC - DOI
    1. Olivo, G., Capocasa, G., Del Giudice, D., Lanzalunga, O. & Di Stefano, S. New horizons for catalysis disclosed by supramolecular chemistry. Chem. Soc. Rev. 50, 7681–7772 (2021). - PubMed - DOI
    1. Peng, W., Qu, X., Shaik, S. & Wang, B. Deciphering the oxygen activation mechanism at the CuC site of particulate methane monooxygenase. Nat. Catal. 4, 266–273 (2021). - DOI

Publication types

LinkOut - more resources