Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;45(10):841-848.
doi: 10.1177/03913988221115444. Epub 2022 Jul 28.

Left ventricular venting in veno-arterial extracorporeal membrane oxygenation: A computer simulation study

Affiliations

Left ventricular venting in veno-arterial extracorporeal membrane oxygenation: A computer simulation study

Matija Jelenc et al. Int J Artif Organs. 2022 Oct.

Abstract

Introduction: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is the fastest way to restore circulation in refractory cardiogenic shock, however it cannot unload the failing left ventricle. There is a lack of consensus regarding optimal approach to left ventricular venting in V-A ECMO patients with severely depressed or absent left ventricular function.

Methods: A computer model was developed in Matlab Simulink R20016b (MathWorks, Inc., Natick, MA, USA) to analyze different venting options as well as atrial septostomy in the setting of cardiogenic shock and V-A ECMO.

Results: The model has shown an inverse linear relationship between left atrial pressure and either vent, Impella or atrial septum defect flow rate. The minimum vent flow required to prevent pulmonary edema in complete loss of left ventricular function needed to be higher than the bronchial blood flow. Atrial septostomy restored normal pulmonary blood flow with low left atrial pressure but induced stasis in the left ventricle. Venting the pulmonary artery induced stasis in the entire pulmonary circulation as well as left atrium and left ventricle. Venting the left ventricle directly with a cannula or Impella device avoided blood stasis.

Conclusion: Our data suggest that reduction of left atrial pressure is linearly related to the vent, Impella or atrial septal defect flow rate. The preferred vent location is the left ventricle as it avoids stasis in the pulmonary circulation and cardiac chambers.

Keywords: Extracorporeal membrane oxygenation; computer simulation; left ventricular dysfunction; left ventricular venting.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources