Nanoparticle-Based Lateral Flow Biosensor Integrated With Loop-Mediated Isothermal Amplification for Rapid and Visual Identification of Chlamydia trachomatis for Point-of-Care Use
- PMID: 35903464
- PMCID: PMC9318599
- DOI: 10.3389/fmicb.2022.914620
Nanoparticle-Based Lateral Flow Biosensor Integrated With Loop-Mediated Isothermal Amplification for Rapid and Visual Identification of Chlamydia trachomatis for Point-of-Care Use
Abstract
Chlamydial infection, caused by Chlamydia trachomatis, is the most common bacterial sexually transmitted infection and remains a major public health problem worldwide, particularly in underdeveloped regions. Developing a rapid and sensitive point-of-care (POC) testing for accurate screening of C. trachomatis infection is critical for earlier treatment to prevent transmission. In this study, a novel diagnostic assay, loop-mediated isothermal amplification integrated with gold nanoparticle-based lateral flow biosensor (LAMP-LFB), was devised and applied for diagnosis of C. trachomatis in clinical samples. A set of LAMP primers based on the ompA gene from 14 C. trachomatis serological variants (serovar A-K, L1, L2, L3) was successfully designed and used for the development of C. trachomatis-LAMP-LFB assay. The optimal reaction system can be performed at a constant temperature of 67°C for 35 min. The total assay process, including genomic DNA extraction (~15 min), LAMP reaction (35 min), and LFB readout (~2 min), could be finished within 60 min. The C. trachomatis-LAMP-LFB could detect down to 50 copies/ml, and the specificity was 100%, no cross-reactions with other pathogens were observed. Hence, our C. trachomatis-LAMP-LFB was a rapid, reliable, sensitive, cost-effective, and easy-to-operate assay, which could offer an attractive POC testing tool for chlamydial infection screening, especially in resource starvation settings.
Keywords: Chlamydia trachomatis; gold nanoparticle-based lateral flow biosensor; limit of detection; loop-mediated isothermal amplification; point-of-care testing.
Copyright © 2022 Chen, Zhou, Tan, Wang, Wu, Liu, Liu, Wang and Dong.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
References
-
- Augustine R., Hasan A., Das S., Ahmed R., Mori Y., Notomi T., et al. (2020). Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology 9, 182. 10.3390/biology9080182 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
