Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 30;22(1):834.
doi: 10.1186/s12885-022-09930-5.

Cancer-testis antigen KK-LC-1 is a potential biomarker associated with immune cell infiltration in lung adenocarcinoma

Affiliations

Cancer-testis antigen KK-LC-1 is a potential biomarker associated with immune cell infiltration in lung adenocarcinoma

Yanli Kang et al. BMC Cancer. .

Abstract

Background: Cancer-testis antigens (CTAs) have emerged as potential clinical biomarkers targeting immunotherapy. KK-LC-1 is a member of CTAs, which has been demonstrated in a variety of tumors tissues and been found to elicit immune responses in cancer patients. However, the expression level and immune infiltration role of KK-LC-1 in lung adenocarcinoma (LUAD) remains to be elucidated.

Methods: In this study, the mRNA expression and overall survival rate of KK-LC-1 were evaluated by the TIMER and TCGA database in LUAD tissues and KK-LC-1 expression was further validated by clinical serum samples using quantitative RT-PCR. The relationship of KK-LC-1 with clinicopathologic parameters was analyzed. ROC curve result showed that miR-1825 was able to distinguish preoperative breast cancer patients from healthy people and postoperative patients. Then, the ROC curves were used to examine the ability of KK-LC-1 to distinguish preoperative LUAD patients from healthy and postoperative patients. The correlation between KK-LC-1 and infiltrating immune cells and immune marker sets was investigated via TIMER, TISIDB database, and CIBERSORT algorithm. The Kaplan-Meier plotter was used to further evaluate the prognostic value based on the expression levels of KK-LC-1 in related immune cells.

Results: The results showed that KK-LC-1 was significantly over-expressed in LUAD, and high levels of expression of KK-LC-1 were also closely correlated with poor overall survival. We also found that KK-LC-1 associated with TMN stage, NSE and CEA. The ROC curve result showed that KK-LC-1 was able to distinguish preoperative LUAD cancer patients from healthy people and postoperative patients. Moreover, KK-LC-1 had a larger AUC with higher diagnostic sensitivity and specificity than CEA. Based on the TIMER, TISIDB database, and CIBERSORT algorithm, the expression of KK-LC-1 was negatively correlated with CD4+ T cell, Macrophage, and Dendritic Cell in LUAD. Moreover, Based on the TIMER database, KK-LC-1 expression had a remarkable correlation with the type markers of Monocyte, TAM, M1 Macrophage, and M2 Macrophage. Furthermore, KK-LC-1 expression influenced the prognosis of LUAD patients by directly affecting immune cell infiltration by the Kaplan-Meier plotter analysis.

Conclusions: In conclusion, KK-LC-1 may serve as a promising diagnostic and prognostic biomarker in LUAD and correlate with immune infiltration and prognosis.

Keywords: Cancer-testis antigen; KK-LC-1; Lung adenocarcinoma; Prognosis; Tumor immune infiltration.

PubMed Disclaimer

Conflict of interest statement

The authors declare that have no competing interests.

Figures

Fig. 1
Fig. 1
KK-LC-1 expression in various human cancers and related to prognosis in LUAD. A Human KK-LC-1 expression in various tumors according to the TIMER database. B The expression levels of KK-LC-1 in LUAD and para-cancerous lung tissues. C KK-LC-1 expression in LUAD and matched normal tissues by TCGA database. D The overall survival rate of KK-LC-1 expression in LUAD
Fig. 2
Fig. 2
KK-LC-1 expression in serum and related to diagnosis in LUAD. A The expression level of KK-LC-1in LUAD serum and healthy person’s serum. ROC curve of serum B KK-LC-1 and C CEA. D KK-LC-1 expression in LUAD patient’s preoperative and postoperative serum. E ROC curve of serum KK-LC-1 to validate pre-operative cases from post-operative in LUAD
Fig. 3
Fig. 3
Association of KK-LC-1 expression with immune infiltration in LUAD according to the TIMER database. A The correlation between KKLC and immune cells by TIMER. B The correlation between KKLC and immune cells by TISIDB. C 22 types of tumor-infiltrating immune cells were analyzed in high and low KK-LC-1 expression groups
Fig. 4
Fig. 4
Association of KK-LC-1 expression with immune marker sets in LUAD based on TIMER database. The correlation between KK-LC-1 expression and the gene markers of A Monocyte (CD68 and CSF1R); B TAM (CD68, IL10 and CCL2); C M1 Macrophage (NOS2, IRF5 and PTGS2); D M2 Macrophage (CD163,VSIG4 and MS4A4A)
Fig. 5
Fig. 5
The prognostic value of high and low expression of KK-LC-1 in LUAD according to immune cell subgroups using Kaplan-Meier potter. The increased and decreased expression of KK-LC-1 in various immune cell subgroups have diverse prognosis in LUAD (A-H)

Similar articles

Cited by

References

    1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. - PubMed
    1. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398(10299):535–554. doi: 10.1016/S0140-6736(21)00312-3. - DOI - PubMed
    1. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–454. doi: 10.1038/nature25183. - DOI - PubMed
    1. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018;9(2):117. doi: 10.1038/s41419-017-0063-y. - DOI - PMC - PubMed
    1. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, Castro G, Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–1830. doi: 10.1016/S0140-6736(18)32409-7. - DOI - PubMed