Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul 30;11(1):44.
doi: 10.1186/s40164-022-00297-8.

Current insight into the regulation of PD-L1 in cancer

Affiliations
Review

Current insight into the regulation of PD-L1 in cancer

Zhuandi Liu et al. Exp Hematol Oncol. .

Abstract

The molecular mechanisms underlying cancer immune escape are a core topic in cancer immunology research. Cancer cells can escape T cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, CD274) immune checkpoint. Studying the PD-L1 regulatory pattern of tumor cells will help elucidate the molecular mechanisms of tumor immune evasion and improve cancer treatment. Recent studies have found that tumor cells regulate PD-L1 at the transcriptional, post-transcriptional, and post-translational levels and influence the anti-tumor immune response by regulating PD-L1. In this review, we focus on the regulation of PD-L1 in cancer cells and summarize the underlying mechanisms.

Keywords: Cancer; Cancer immunotherapy; Epigenetic regulation; PD-L1; Post-translational modification; Transcriptional regulation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
The expression and biological function of PD-L1. PD-L1 is expressed in hematopoietic cells, including T cells, B cells, DCs, macrophages, mast cells, and many non-hematopoietic cell types. PD-1 binds to PD-L1 to induce cancer cell immune escape, proliferation, drug resistance, and autophagy, and PD-1/PD-L1 blockade can inhibit these functions
Fig. 2
Fig. 2
Overview of the regulatory mechanisms involved in PD-L1 expression. By attaching to the PD-L1 promoter, numerous transcription factors contribute to the increase of PD-L1 expression. N6-methyladenosine increases PD-L1 expression while DNA methylation, histone modification, and autophagy suppress it. MicroRNAs, including miR-138, miR-138-5p, miR-152, and others shown in Table 1, suppress PD-L1 by directly binding to the 3’UTR of PD-L1 mRNA. LncRNAs and circRNAs are also relevant to PD-L1 expression and tumor immune escape. PD-L1 is upregulated by glycosylation and palmitoylation, which stabilize PD-L1 protein, while ubiquitination, phosphorylation, and acetylation exert the opposite effect

References

    1. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61. doi: 10.1016/j.ccell.2015.03.001. - DOI - PMC - PubMed
    1. Mohammadi P, Hesari M, Chalabi M, Salari F, Khademi F. An overview of immune checkpoint therapy in autoimmune diseases. Int Immunopharmacol. 2022;107:108647. doi: 10.1016/j.intimp.2022.108647. - DOI - PubMed
    1. Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition. Front Immunol. 2020;11:167. doi: 10.3389/fimmu.2020.00167. - DOI - PMC - PubMed
    1. Yu X, Gao R, Li Y, Zeng C. Regulation of PD-1 in T cells for cancer immunotherapy. Eur J Pharmacol. 2020;881:173240. doi: 10.1016/j.ejphar.2020.173240. - DOI - PubMed
    1. Rezaei M, Tan J, Zeng C, Li Y, Ganjalikhani-Hakemi M. TIM-3 in leukemia; immune response and beyond. Front Oncol. 2021;11:753677. doi: 10.3389/fonc.2021.753677. - DOI - PMC - PubMed