Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 30;12(1):13118.
doi: 10.1038/s41598-022-17506-3.

(+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identified by using in silico methods and in vitro assay

Affiliations

(+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identified by using in silico methods and in vitro assay

Eunseok Oh et al. Sci Rep. .

Abstract

The pandemic caused by severe acute respiratory Coronavirus-2 (SARS-CoV-2) has been ongoing for over two years, and treatment for COVID-19, other than monoclonal antibodies, is urgently required. Accordingly, we have investigated the inhibitors of SARS-CoV-2 protein targets by high-throughput virtual screening using a marine natural products database. Considering the calculated molecular properties and availability of the compounds, (+)-usnic acid was selected as a suitable hit. In the in vitro antiviral assay of (+)-usnic acid by the immunofluorescence method, IC50 was 7.99 μM, which is similar to that of remdesivir used as a positive control. The generalized Born and surface area continuum solvation (MM/GBSA) method was performed to find the potent target of (+)-usnic acid, and the Mpro protein showed the most prominent value, -52.05 kcal/mol, among other SARS-CoV-2 protein targets. Thereafter, RMSD and protein-ligand interactions were profiled using molecular dynamics (MD) simulations. Sodium usnate (NaU) improved in vitro assay results with an IC50 of 5.33 μM and a selectivity index (SI) of 9.38. Additionally, when (+)-usnic acid was assayed against SARS-CoV-2 variants, it showed enhanced efficacy toward beta variants with an IC50 of 2.92 μM and SI of 11.1. We report the in vitro anti-SARS-CoV-2 efficacy of (+)-usnic acid in this study and propose that it has the potential to be developed as a COVID-19 treatment if its in vivo efficacy has been confirmed.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
The anti-SARS-CoV-2 efficacy of (+)-usnic acid and controls; (a) The structure of (+)-usnic acid on the left and dose response curve of (+)-usnic acid against SARS-CoV-2 on the right; (b) The dose response curve of controls (chloroquine, lopinavir and remdesivir); the inhibition of infection and cell number to mock is shown using blue and red lines, respectively.
Figure 2
Figure 2
Predicted binding-free energies (kcal/mol) of 8 SARS-CoV-2 target proteins bound with (+)-usnic acid, calculated by Prime MM-GBSA.
Figure 3
Figure 3
The MD simulation of (+)-usnic acid bound to the SARS-CoV-2 Mpro protein; (a) RMSD of the alpha-carbon of Mpro; (b) The ligand RMSD of (+)-usnic acid bound to Mpro, simulated for 100 ns; (c) The Mpro amino acid interaction with (+)-usnic acid showing H-bonds, hydrophobic interactions and water bridges; (d) The 2D % interaction illustration of (+)-usnic acid in tautomeric form; (e) The 3D illustration of (+)-usnic acid bound to Mpro showing interacting amino acids and hydrogen bonds.

Similar articles

Cited by

References

    1. Harvey WT, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. - DOI - PMC - PubMed
    1. WHO. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/ (2021).
    1. Ruan, L. & Zeng, G. in Emerging Infections in Asia, 75–96 (Springer, 2008).
    1. Uyeki TM, et al. Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus. Emerg. Infect. Dis. 2016;22:1. doi: 10.3201/eid2207.160022. - DOI - PMC - PubMed
    1. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41:1100–1115. doi: 10.1016/j.it.2020.10.004. - DOI - PMC - PubMed

Publication types

Supplementary concepts