Opto-Electrostatic Determination of Nucleic Acid Double-Helix Dimensions and the Structure of the Molecule-Solvent Interface
- PMID: 35910310
- PMCID: PMC9330769
- DOI: 10.1021/acs.macromol.2c00657
Opto-Electrostatic Determination of Nucleic Acid Double-Helix Dimensions and the Structure of the Molecule-Solvent Interface
Abstract
A DNA molecule is highly electrically charged in solution. The electrical potential at the molecular surface is known to vary strongly with the local geometry of the double helix and plays a pivotal role in DNA-protein interactions. Further out from the molecular surface, the electrical field propagating into the surrounding electrolyte bears fingerprints of the three-dimensional arrangement of the charged atoms in the molecule. However, precise extraction of the structural information encoded in the electrostatic "far field" has remained experimentally challenging. Here, we report an optical microscopy-based approach that detects the field distribution surrounding a charged molecule in solution, revealing geometric features such as the radius and the average rise per basepair of the double helix with up to sub-Angstrom precision, comparable with traditional molecular structure determination techniques like X-ray crystallography and nuclear magnetic resonance. Moreover, measurement of the helical radius furnishes an unprecedented view of both hydration and the arrangement of cations at the molecule-solvent interface. We demonstrate that a probe in the electrostatic far field delivers structural and chemical information on macromolecules, opening up a new dimension in the study of charged molecules and interfaces in solution.
© 2022 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





































Similar articles
-
Far-Field Electrostatic Signatures of Macromolecular 3D Conformation.Nano Lett. 2022 Oct 12;22(19):7834-7840. doi: 10.1021/acs.nanolett.2c02485. Epub 2022 Sep 20. Nano Lett. 2022. PMID: 36125326 Free PMC article.
-
Electrostatic free energies carry structural information on nucleic acid molecules in solution.J Chem Phys. 2022 Apr 7;156(13):134201. doi: 10.1063/5.0080008. J Chem Phys. 2022. PMID: 35395894
-
Electrolyte solution structure and its effect on the properties of electric double layers with surface charge regulation.J Colloid Interface Sci. 2017 Feb 15;488:180-189. doi: 10.1016/j.jcis.2016.10.084. Epub 2016 Oct 29. J Colloid Interface Sci. 2017. PMID: 27825062
-
Thermodynamics of protein folding: effects of hydration and electrostatic interactions.Adv Biophys. 1994;30:105-54. doi: 10.1016/0065-227x(94)90012-4. Adv Biophys. 1994. PMID: 7709803 Review.
-
Crystal structures of A-DNA duplexes.Biopolymers. 1997;44(1):45-63. doi: 10.1002/(SICI)1097-0282(1997)44:1<45::AID-BIP4>3.0.CO;2-#. Biopolymers. 1997. PMID: 9097733 Review.
Cited by
-
Single-Molecule Trapping and Measurement in a Nanostructured Lipid Bilayer System.Langmuir. 2022 Nov 15;38(45):13923-13934. doi: 10.1021/acs.langmuir.2c02203. Epub 2022 Nov 3. Langmuir. 2022. PMID: 36326814 Free PMC article.
-
Sensing the structural and conformational properties of single-stranded nucleic acids using electrometry and molecular simulations.Sci Rep. 2024 Sep 4;14(1):20582. doi: 10.1038/s41598-024-70641-x. Sci Rep. 2024. PMID: 39232063 Free PMC article.
-
Wide-field optical imaging of electrical charge and chemical reactions at the solid-liquid interface.Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2209955119. doi: 10.1073/pnas.2209955119. Epub 2022 Dec 2. Proc Natl Acad Sci U S A. 2022. PMID: 36459653 Free PMC article.
-
Far-Field Electrostatic Signatures of Macromolecular 3D Conformation.Nano Lett. 2022 Oct 12;22(19):7834-7840. doi: 10.1021/acs.nanolett.2c02485. Epub 2022 Sep 20. Nano Lett. 2022. PMID: 36125326 Free PMC article.
References
-
- Tjandra N.; Tate S.-i.; Ono A.; Kainosho M.; Bax A. The NMR structure of a DNA dodecamer in an aqueous dilute liquid crystalline phase. J. Am. Chem. Soc. 2000, 122, 6190–6200. 10.1021/ja000324n. - DOI
LinkOut - more resources
Full Text Sources