The statistical theory of linear selection indices from phenotypic to genomic selection
- PMID: 35911794
- PMCID: PMC9305178
- DOI: 10.1002/csc2.20676
The statistical theory of linear selection indices from phenotypic to genomic selection
Abstract
A linear selection index (LSI) can be a linear combination of phenotypic values, marker scores, and genomic estimated breeding values (GEBVs); phenotypic values and marker scores; or phenotypic values and GEBVs jointly. The main objective of the LSI is to predict the net genetic merit (H), which is a linear combination of unobservable individual traits' breeding values, weighted by the trait economic values; thus, the target of LSI is not a parameter but rather the unobserved random H values. The LSI can be single-stage or multi-stage, where the latter are methods for selecting one or more individual traits available at different times or stages of development in both plants and animals. Likewise, LSIs can be either constrained or unconstrained. A constrained LSI imposes predetermined genetic gain on expected genetic gain per trait and includes the unconstrained LSI as particular cases. The main LSI parameters are the selection response, the expected genetic gain per trait, and its correlation with H. When the population mean is zero, the selection response and expected genetic gain per trait are, respectively, the conditional mean of H and the genotypic values, given the LSI values. The application of LSI theory is rapidly diversifying; however, because LSIs are based on the best linear predictor and on the canonical correlation theory, the LSI theory can be explained in a simple form. We provided a review of the statistical theory of the LSI from phenotypic to genomic selection showing their relationships, advantages, and limitations, which should allow breeders to use the LSI theory confidently in breeding programs.
© 2021 The Authors. Crop Science © 2021 Crop Science Society of America.
Conflict of interest statement
The authors do not have any conflict of interest.
Similar articles
-
Efficiency of a Constrained Linear Genomic Selection Index To Predict the Net Genetic Merit in Plants.G3 (Bethesda). 2019 Dec 3;9(12):3981-3994. doi: 10.1534/g3.119.400677. G3 (Bethesda). 2019. PMID: 31570501 Free PMC article.
-
Optimum and Decorrelated Constrained Multistage Linear Phenotypic Selection Indices Theory.Crop Sci. 2019 Nov-Dec;59:2585-2600. doi: 10.2135/cropsci2019.04.0241. Epub 2019 Oct 31. Crop Sci. 2019. PMID: 33343016 Free PMC article.
-
Combined Multistage Linear Genomic Selection Indices To Predict the Net Genetic Merit in Plant Breeding.G3 (Bethesda). 2020 Jun 1;10(6):2087-2101. doi: 10.1534/g3.120.401171. G3 (Bethesda). 2020. PMID: 32312840 Free PMC article.
-
Expectation and variance of the estimator of the maximized selection response of linear selection indices with normal distribution.Theor Appl Genet. 2020 Sep;133(9):2743-2758. doi: 10.1007/s00122-020-03629-6. Epub 2020 Jun 20. Theor Appl Genet. 2020. PMID: 32561956 Free PMC article.
-
Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review.Animals (Basel). 2021 Feb 25;11(3):599. doi: 10.3390/ani11030599. Animals (Basel). 2021. PMID: 33668747 Free PMC article. Review.
Cited by
-
Climate-smart rice (Oryza sativa L.) genotypes identification using stability analysis, multi-trait selection index, and genotype-environment interaction at different irrigation regimes with adaptation to universal warming.Sci Rep. 2024 Jun 15;14(1):13836. doi: 10.1038/s41598-024-64808-9. Sci Rep. 2024. PMID: 38879711 Free PMC article.
-
Identification and Characterization of Novel Sources of Resistance to Rust Caused by Uromyces pisi in Pisum spp.Plants (Basel). 2022 Aug 31;11(17):2268. doi: 10.3390/plants11172268. Plants (Basel). 2022. PMID: 36079654 Free PMC article.
-
Identification of Spring Wheat with Superior Agronomic Performance under Contrasting Nitrogen Managements Using Linear Phenotypic Selection Indices.Plants (Basel). 2022 Jul 20;11(14):1887. doi: 10.3390/plants11141887. Plants (Basel). 2022. PMID: 35890521 Free PMC article.
-
Selection of parental lines for plant breeding via genomic prediction.Front Plant Sci. 2022 Jul 27;13:934767. doi: 10.3389/fpls.2022.934767. eCollection 2022. Front Plant Sci. 2022. PMID: 35968112 Free PMC article.
-
Use of multi-trait principal component selection index to identify fall armyworm (Spodoptera frugiperda) resistant maize genotypes.Front Plant Sci. 2025 Mar 27;16:1544010. doi: 10.3389/fpls.2025.1544010. eCollection 2025. Front Plant Sci. 2025. PMID: 40212865 Free PMC article.
References
-
- Akbar, M. K. , Lin, C. Y. , Gyles, N. R. , Gavora, J. S. , & Brown, C. J. (1984). Some aspects of selection indices with constraints. Poultry Science, 63, 1899–1905. 10.3382/ps.0631899 - DOI
-
- Alvarado, G. , Pacheco, A. , Perez‐Elizalde, S. , Burgueño, J. , & Rodriguez, F. M. (2018). RinSel: Selection indices with R. pp. 243–256. In Linear selection indices in modern plant breeding (p. 10). Springer.
-
- Andersson, E. , Spanos, K. , Mullin, T. , & Lindgren, D. (1998). Phenotypic selection compared to restricted combined index selection for many generations. Silva Fennica, 32(2), 111–120. 10.14214/sf.689 - DOI
-
- Arismendi, J. C. (2013). Multivariate truncated moments. Journal of Multivariate Analysis, 117, 41–75. 10.1016/j.jmva.2013.01.007 - DOI
-
- Arnold, B. C. , Castillo, E. , & Sarabia, M. (1999). Conditional specification of statistical models. Springer.
LinkOut - more resources
Full Text Sources