Machine learning-based inverse design for electrochemically controlled microscopic gradients of O2 and H2O2
- PMID: 35914135
- PMCID: PMC9371721
- DOI: 10.1073/pnas.2206321119
Machine learning-based inverse design for electrochemically controlled microscopic gradients of O2 and H2O2
Abstract
A fundamental understanding of extracellular microenvironments of O2 and reactive oxygen species (ROS) such as H2O2, ubiquitous in microbiology, demands high-throughput methods of mimicking, controlling, and perturbing gradients of O2 and H2O2 at microscopic scale with high spatiotemporal precision. However, there is a paucity of high-throughput strategies of microenvironment design, and it remains challenging to achieve O2 and H2O2 heterogeneities with microbiologically desirable spatiotemporal resolutions. Here, we report the inverse design, based on machine learning (ML), of electrochemically generated microscopic O2 and H2O2 profiles relevant for microbiology. Microwire arrays with suitably designed electrochemical catalysts enable the independent control of O2 and H2O2 profiles with spatial resolution of ∼101 μm and temporal resolution of ∼10° s. Neural networks aided by data augmentation inversely design the experimental conditions needed for targeted O2 and H2O2 microenvironments while being two orders of magnitude faster than experimental explorations. Interfacing ML-based inverse design with electrochemically controlled concentration heterogeneity creates a viable fast-response platform toward better understanding the extracellular space with desirable spatiotemporal control.
Keywords: O2 and H2O2 microenvironments; inverse design; microwire array; neural networks; spatiotemporal heterogeneity.
Conflict of interest statement
The authors declare no competing interest.
Figures





Similar articles
-
A distinct reactive oxygen species profile confers chemoresistance in glioma-propagating cells and associates with patient survival outcome.Antioxid Redox Signal. 2013 Dec 20;19(18):2261-79. doi: 10.1089/ars.2012.4999. Epub 2013 Apr 12. Antioxid Redox Signal. 2013. PMID: 23477542
-
An update on methods and approaches for interrogating mitochondrial reactive oxygen species production.Redox Biol. 2021 Sep;45:102044. doi: 10.1016/j.redox.2021.102044. Epub 2021 Jun 16. Redox Biol. 2021. PMID: 34157640 Free PMC article. Review.
-
Electrochemical detection of H2O2 formation in isolated mitochondria.Methods Enzymol. 2013;526:123-34. doi: 10.1016/B978-0-12-405883-5.00007-7. Methods Enzymol. 2013. PMID: 23791097
-
Near-Infrared Upconversion Mesoporous Tin Oxide Bio-Photocatalyst for H2O2-Activatable O2-Generating Magnetic Targeting Synergetic Treatment.ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41047-41061. doi: 10.1021/acsami.0c10685. Epub 2020 Sep 2. ACS Appl Mater Interfaces. 2020. PMID: 32816454
-
Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling.Biol Chem. 2017 Oct 26;398(11):1209-1227. doi: 10.1515/hsz-2017-0160. Biol Chem. 2017. PMID: 28675747 Review.
Cited by
-
Bringing carbon to life via one-carbon metabolism.Trends Biotechnol. 2025 Mar;43(3):572-585. doi: 10.1016/j.tibtech.2024.08.014. Epub 2024 Sep 20. Trends Biotechnol. 2025. PMID: 39306491 Free PMC article. Review.
-
SeroWare: An Open-Source Software Suite for Voltammetry Data Acquisition and Analysis.ACS Chem Neurosci. 2025 Mar 5;16(5):856-867. doi: 10.1021/acschemneuro.4c00799. Epub 2025 Feb 24. ACS Chem Neurosci. 2025. PMID: 39993240 Free PMC article.
-
Machine-Learning-Guided Design of Nanostructured Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: From Material Discovery to Performance Optimization.Nanomaterials (Basel). 2025 Jun 18;15(12):948. doi: 10.3390/nano15120948. Nanomaterials (Basel). 2025. PMID: 40559311 Free PMC article. Review.
References
-
- “Microbial ecosystems” in Brock Biology of Microorganisms, Madigan M. T., Martinko J. M., Parker J., Eds. (Pearson Prentice Hall, Upper Saddle River, NJ, ed. 15, 2018), pp. 651–686.
-
- Stewart P. S., Franklin M. J., Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008). - PubMed
-
- Battin T. J., Besemer K., Bengtsson M. M., Romani A. M., Packmann A. I., The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources