An Elementary Solution to a Duffing Equation
- PMID: 35915602
- PMCID: PMC9338748
- DOI: 10.1155/2022/2357258
An Elementary Solution to a Duffing Equation
Abstract
In this work, we study the Duffing equation. Analytical solution for undamped and unforced case is provided for any given arbitrary initial conditions. An approximate analytical solution is given for the damped or trigonometrically forced Duffing equation for arbitrary initial conditions. The analytical solutions are expressed in terms of elementary trigonometric functions as well as in terms of the Jacobian elliptic functions. Examples are added to illustrate the obtained results. We also introduce new functions for approximating the Jacobian and Weierstrass elliptic functions in terms of the trigonometric functions sine and cosine. Results are high accurate.
Copyright © 2022 Alvaro H. Salas.
Conflict of interest statement
The authors declare that they have no conflicts of interest.
Figures











Similar articles
-
Analytical Approximant to a Quadratically Damped Forced Cubic-Quintic Duffing Oscillator.ScientificWorldJournal. 2022 Sep 13;2022:8125305. doi: 10.1155/2022/8125305. eCollection 2022. ScientificWorldJournal. 2022. PMID: 36147797 Free PMC article.
-
Approximate Analytical and Numeric Solutions to a Forced Damped Gardner Equation.ScientificWorldJournal. 2022 May 11;2022:3240918. doi: 10.1155/2022/3240918. eCollection 2022. ScientificWorldJournal. 2022. PMID: 35655902 Free PMC article.
-
Analytical Approximant to a Quadratically Damped Duffing Oscillator.ScientificWorldJournal. 2022 Feb 7;2022:3131253. doi: 10.1155/2022/3131253. eCollection 2022. ScientificWorldJournal. 2022. PMID: 35177958 Free PMC article.
-
Exact solutions for the Cahn-Hilliard equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions.Sci Rep. 2024 Jun 7;14(1):13100. doi: 10.1038/s41598-024-62961-9. Sci Rep. 2024. PMID: 38849360 Free PMC article.
-
Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions.Int J Pharm. 2011 Oct 10;418(1):18-27. doi: 10.1016/j.ijpharm.2011.01.019. Epub 2011 Jan 18. Int J Pharm. 2011. PMID: 21251957 Review.
References
-
- Duffing G. Erzwungene Schwingung bei veränderlicher Eigenfrequenz und ihre technische Bedeutung . Braunschweig, Germany: Vieweg; 1918.
-
- Feng Z. A qualitative study of the damped duffing equation andApplications. Discrete and continuous dynamical systems-series B. Follow journal . 5(5) doi: 10.3934/dcdsb.2006.6.1097. - DOI
-
- Loria A., Panteley E., Nijmeijer H. Control of the chaotic Duffing equation withuncertainty in all parameters. IEEE Transactions on Circuits and Systems I . 1998;45(12):1252–1255. doi: 10.1109/81.736558. - DOI
-
- Thompson J. M. T., Stewart H. B. Nonlinear Dynamics and Chaos . New York, NY, USA: John Wiley & Sons; 1986.
-
- Moon F. C. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers . New York, NY, USA: John Wiley & Sons; 1987.
LinkOut - more resources
Full Text Sources