The identification of the missing maternal genome of the allohexaploid camelina (Camelina sativa)
- PMID: 35916590
- DOI: 10.1111/tpj.15931
The identification of the missing maternal genome of the allohexaploid camelina (Camelina sativa)
Abstract
Hexaploid camelina (Camelina sativa; 2n = 6x = 40) is an important oilseed crop closely related to Arabidopsis. Compared to other polyploid crops, the origin of the three camelina subgenomes has begun to be unveiled only recently. While phylogenomic studies identified the diploid C. hispida (2n = 2x = 14) as the paternal genome of C. sativa, the maternal donor genome remained unknown. Because the chromosomes assigned to a putative maternal genome resembled those of diploid C. neglecta (2n = 12), a tetraploid C. neglecta-like genome (2n = 4x = 26) was hypothesized to be the likely maternal ancestor of the hexaploid crop. Here we report the chromosome-level structure of the predicted tetraploid Camelina genome identified among genotypes previously classified together as C. microcarpa and referred to here as C. intermedia. Detailed cytogenomic analysis of the tetraploid genome revealed high collinearity with two maternally inherited subgenomes of the hexaploid C. sativa. The identification of the missing donor tetraploid genome provides new insights into the reticulate evolutionary history of the Camelina polyploid complex and allows us to postulate a comprehensive evolutionary model for the genus. The herein elucidated origin of the C. sativa genome opens the door for subsequent genome modifications and resynthesis of the allohexaploid camelina genome.
Keywords: Camelina; Brassicaceae; allopolyploidy; chromosome rearrangements; false flax; genome evolution; hybridization.
© 2022 Society for Experimental Biology and John Wiley & Sons Ltd.
Similar articles
-
Sequencing of Camelina neglecta, a diploid progenitor of the hexaploid oilseed Camelina sativa.Plant Biotechnol J. 2023 Mar;21(3):521-535. doi: 10.1111/pbi.13968. Epub 2022 Dec 12. Plant Biotechnol J. 2023. PMID: 36398722 Free PMC article.
-
Overcoming genetic paucity of Camelina sativa: possibilities for interspecific hybridization conditioned by the genus evolution pathway.Front Plant Sci. 2023 Sep 25;14:1259431. doi: 10.3389/fpls.2023.1259431. eCollection 2023. Front Plant Sci. 2023. PMID: 37818316 Free PMC article. Review.
-
Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering.Plant Cell. 2019 Nov;31(11):2596-2612. doi: 10.1105/tpc.19.00366. Epub 2019 Aug 26. Plant Cell. 2019. PMID: 31451448 Free PMC article.
-
Assessing Diversity in the Camelina Genus Provides Insights into the Genome Structure of Camelina sativa.G3 (Bethesda). 2020 Apr 9;10(4):1297-1308. doi: 10.1534/g3.119.400957. G3 (Bethesda). 2020. PMID: 32046969 Free PMC article.
-
Camelina sativa, an oilseed at the nexus between model system and commercial crop.Plant Cell Rep. 2018 Oct;37(10):1367-1381. doi: 10.1007/s00299-018-2308-3. Epub 2018 Jun 7. Plant Cell Rep. 2018. PMID: 29881973 Review.
Cited by
-
Exploring genetic diversity, population structure, and subgenome differences in the allopolyploid Camelina sativa: implications for future breeding and research studies.Hortic Res. 2024 Sep 9;11(11):uhae247. doi: 10.1093/hr/uhae247. eCollection 2024 Nov. Hortic Res. 2024. PMID: 39539416 Free PMC article.
-
Genome-wide identification and diversity of FAD2, FAD3 and FAE1 genes in terms of biotechnological importance in Camelina species.BMC Biotechnol. 2024 Dec 18;24(1):107. doi: 10.1186/s12896-024-00936-4. BMC Biotechnol. 2024. PMID: 39695603 Free PMC article.
-
Transposon signatures of allopolyploid genome evolution.Nat Commun. 2023 Jun 1;14(1):3180. doi: 10.1038/s41467-023-38560-z. Nat Commun. 2023. PMID: 37263993 Free PMC article.
-
Sequencing of Camelina neglecta, a diploid progenitor of the hexaploid oilseed Camelina sativa.Plant Biotechnol J. 2023 Mar;21(3):521-535. doi: 10.1111/pbi.13968. Epub 2022 Dec 12. Plant Biotechnol J. 2023. PMID: 36398722 Free PMC article.
-
Overcoming genetic paucity of Camelina sativa: possibilities for interspecific hybridization conditioned by the genus evolution pathway.Front Plant Sci. 2023 Sep 25;14:1259431. doi: 10.3389/fpls.2023.1259431. eCollection 2023. Front Plant Sci. 2023. PMID: 37818316 Free PMC article. Review.
References
REFERENCES
-
- Al-Shehbaz, I.A. & Beilstein, M.A. (2010) Camelina. In: Editorial Committee (Ed.) Flora of North America North of Mexico, Vol. 7. New York and Oxford: Oxford University Press, pp. 451-453.
-
- Becker, H.C., Engqvist, G.M. & Karlsson, B. (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 91, 62-67.
-
- Beilstein, M.A., Al-Shehbaz, I.A., Mathews, S. & Kellogg, E.A. (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF se- quence data: Tribes and trichomes revisited. American Journal of Botany, 95, 1307-1327.
-
- Berti, M., Gesch, R., Eynck, C., Anderson, J. & Cermak, S.C. (2016) Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710.
-
- Brock, J.R., Dönmez, A.A., Beilstein, M.A. & Olsen, K.M. (2018) Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Molecular Phylogenetics and Evolution, 127, 834-842.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources