Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 2;12(1):13293.
doi: 10.1038/s41598-022-15633-5.

Understanding hesitancy with revealed preferences across COVID-19 vaccine types

Affiliations

Understanding hesitancy with revealed preferences across COVID-19 vaccine types

Kristóf Kutasi et al. Sci Rep. .

Abstract

Many countries have secured larger quantities of COVID-19 vaccines than their population is willing to take. The abundance and the large variety of vaccines created not only an unprecedented intensity of vaccine related public discourse, but also a historical moment to understand vaccine hesitancy better. Yet, the heterogeneity of hesitancy by vaccine types has been neglected in the existing literature so far. We address this problem by analysing the acceptance and the assessment of five vaccine types. We use information collected with a nationally representative survey at the end of the third wave of the COVID-19 pandemic in Hungary. During the vaccination campaign, individuals could reject the assigned vaccine to wait for a more preferred alternative that enables us to quantify revealed preferences across vaccine types. We find that hesitancy is heterogenous by vaccine types and is driven by individuals' trusted source of information. Believers of conspiracy theories are more likely to evaluate the mRNA vaccines (Pfizer and Moderna) unacceptable. Those who follow the advice of politicians are more likely to evaluate vector-based (AstraZeneca and Sputnik) or whole-virus vaccines (Sinopharm) acceptable. We argue that the greater selection of available vaccine types and the free choice of the individual are desirable conditions to increase the vaccination rate in societies.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Revealed vaccine preferences by rejection and re-selection. The network of revealed vaccine preferences in Hungary. Vaccines are linked if someone in our data has rejected one vaccine and later accepted another. The direction of the link goes from rejected to accepted and the width of the arrow corresponds to the percentage of individuals who acted accordingly. We conditioned on those individuals who rejected at least one vaccine.
Figure 2
Figure 2
Dynamics of vaccination by vaccine types and re-selection. (A) Dynamics of vaccination by vaccine types. Dots represent the taken vaccine by weeks in 2021. Dark dots represent the vaccines that were accepted after rejecting another one. (B) The dynamics of vaccination by age and chronic illness. We used red circles for the chronically ill patients and green circles for the healthy individuals to show the day of receiving the first vaccine. Filled markers denote the individuals who rejected at least one vaccine earlier. Dashed lines represent the local averages of vaccinated patients’ age.
Figure 3
Figure 3
Source of advice taken characterize hesitancy against vaccines differently. Estimation results from linear probability models with robust standard errors. The dependent variable equals 1 if the respondent evaluates a vaccine type unacceptable and 0 otherwise. Markers denote point estimates and 95% confidence intervals are denoted by the bars. Non-significant coefficients are in light blue (p0.05); significant coefficients are in dark-blue (p<0.05).
Figure 4
Figure 4
Average vaccine rating by assigned, re-selected and rejected vaccines show polarization of vaccine hesitancy. Individuals are grouped by columns of received vaccine in (A) and (B) and by columns of assigned vaccine in (C) (marked by overline). Rows correspond to average rating of a certain vaccine. (A) Ratings of those patients who accepted their first vaccine offer suggest that Pfizer and Moderna were the best assessed vaccines. (B) Ratings of those patients who rejected at least one assigned vaccine reveal that re-selection of vaccines is paired with better assessment of the received vaccine. (C) Ratings of those patients who rejected at least one assigned vaccine illustrate polarization of hesitancy by vaccine types. The average rating in the first two shaded columns are calculated from few observations only.

Similar articles

Cited by

References

    1. Cohen, J. Vaccine designers take first shots at COVID-19 (2020). - PubMed
    1. Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368:945–946. doi: 10.1126/science.abb8923. - DOI - PubMed
    1. Corey L, Mascola JR, Fauci AS, Collins FS. A strategic approach to COVID-19 vaccine R&D. Science. 2020;368:948–950. doi: 10.1126/science.abc5312. - DOI - PubMed
    1. Lazarus JV, et al. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2021;27:225–228. doi: 10.1038/s41591-020-1124-9. - DOI - PMC - PubMed
    1. Machingaidze, S. & Wiysonge, C. S. Understanding COVID-19 vaccine hesitancy. Nat. Med., 1–2 (2021). - PubMed

Publication types